首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The origin and development of Asian monsoon circula-tion, the desertification and aridification of Asian inland in relation to vegetation evolution and the soil erosion in northwest China have been more and more drawing inten-sive scientific and society attention. Recently the studiesof monsoon evolution from some Tertiary Red Clay sec-tions located at the central Loess Plateau in the eastern Liupan Mountains, based on chronology, dust flux, grains size, magnetic susceptibility, and rates o…  相似文献   

2.
中国黄土-古土壤-红黏土序列完整记录了7.5 Ma以来东亚季风演化历史。黄土-古土壤的低频磁化率已成为东亚夏季风演化的代用指标之一,并得到广泛的应用和全球对比。虽然古土壤磁化率增强的成土观点已得到广泛认可,但磁化率与成壤强度的相关性还不是十分清楚,磁化率应用方面仍存在问题。磁化率与成壤强度、生物化学作用和古气候关系尚在研究中。  相似文献   

3.
Meng  XianWei  Xia  Peng  Zheng  Jun  Wang  XiangQin 《科学通报(英文版)》2011,56(6):547-551
Evolution of the East Asian monsoon and its response to uplift of the Tibetan Plateau has been investigated in the study of global change. Core sediment samples drilled in the South China Sea during ODP Leg184 are the best materials for studying long-term variability of the East Asian monsoon. R-mode factor analysis of major elements in the fine grain-sized carbonate-free sediments (<4 μm) of the upper 185 mcd splice of ODP Site 1146 drilled during Leg184 in the South China Sea shows that Ti, TFe2O3, MgO, K2O, P, CaO, and Al2O3 are representative of a terrestrial factor. The variation in the terrestrial factor score is subject to chemical erosion in the source region and thus indicates the evolution of the East Asian summer monsoon. The terrestrial factor score has three stepwise decreases at ~1.3 Ma, ~0.9 Ma, and ~0.6 Ma, indicating the phased weakening of the East Asian summer monsoon is related to wholly stepwise, quick uplifts of the Tibetan Plateau since 1.8 Ma. The periodic fluctuation of the terrestrial factor score since ~0.6 Ma indicates that the glacial-interglacial cycles have been the main force driving the evolution of the East Asian monsoon. As in the case of Chinese loess, the long-term evolution of the East Asian monsoon recorded in sediments of the South China Sea reflects a coupled effect of the glacial-interglacial cycle and uplift of the Tibetan Plateau.  相似文献   

4.
Using meteorological observations, proxies of precipitation and temperature, and climate simulation outputs, we synthetically analyzed the regularities of decadal-centennial-scale changes in the summer thermal contrast between land and ocean and summer precipitation over the East Asian monsoon region during the past millennium; compared the basic characteristics of the East Asian summer monsoon (EASM) circulation and precipitation in the present day, the Little Ice Age (LIA) and the Medieval Warm Period (MWP); and explored their links with solar irradiance and global climate change. The results indicate that over the last 150 years, the EASM circulation and precipitation, indicated by the temperature contrast between the East Asian mainland and adjacent oceans, had a significant decadal perturbation and have been weaker during the period of rapid global warming over the past 50 years. On the centennial time scale, the EASM in the MWP was strongest over the past 1000 years. Over the past 1000 years, the EASM was weakest in 1450-1570. When the EASM circulation was weaker, the monsoon rain belt over eastern China was generally located more southward, with there being less precipitation in North China and more precipitation in the Yangtze River valley; therefore, there was an anomalous pattern of southern flood/northern drought. From the 1900s to 1920s, precipitation had a pat- tern opposite to that of the southern flood/northern drought, with there being less precipitation in the Yangtze River valley and more precipitation in North China. Compared with the case for the MWP, there was a longer-time-scale southern flood/northern drought phenomenon in 1400-1600. Moreover, the EASM circulation and precipitation did not synchronously vary with the trend of global temperature. During the last 150 years, although the annual mean surface temperature around the world and in China has increased, the EASM circulation and precipitation did not have strengthening or weakening trends. Over the past 1000 years, the weakest EASM occurred ahead of the lowest Northern Hemispheric temperature and corresponded to the weakest solar irradiance.  相似文献   

5.
The middle-Holocene was a period of profound cul- ture transitions: the Neolithic culture around Central China[1], Mesopotamia[2] and India[3] all mysteriously collapsed around 4 ka . It is plausible that this civiliza-tion collapse can be contributed to …  相似文献   

6.
Considering the different uplifting time of different subregions of the Himalaya-Tibetan Plateau(TP),a series of numerical simulations have been conducted with the Community Atmosphere Model(CAM4) developed at the National Center for Atmospheric Research to explore the effects of the phased tectonic uplift of the Himalaya-TP on the evolution of Asian summer monsoons.The results show that the uplifts of the Himalaya and northern TP significantly affect the evolutions of South Asian summer monsoon and northern East Asian summer monsoon respectively.That is,the tectonic uplift of the Himalaya intensifies the South Asian summer monsoon circulation and increases the precipitation in South Asia,whereas the uplift of the northern TP intensifies the northern East Asian summer monsoon circulation and increases the precipitation in northern East Asia.Compared with previous simulations,current comparative analyses of modeling results for different subregional uplifts within the Himalaya-TP help deepen our understanding of the evolutionary history of Asian monsoons.  相似文献   

7.
As the third summary report of ODP Leg 184 to the South China Sea (SCS), this paper discusses the evolution of the East Asian monsoon and the SCS basin. A multi-proxy approach, involving geochemistry, micropale-ontology, pollen and other analyses, was adopted for reconstructing the evolutionary history of the East Asian monsoon, which was characterized by a series of paleo-climate events especially at 8, 3.2, 2.2 and 0.4 Ma. The new record indicates similar stages in the development of the East and South Asian monsoons, with an enhanced winter monsoon over East Asia being the major difference. The rich spectrums of monsoon variability from the southern SCS also reveal other characteristic features of the low latitude ocean. Evidence for the evolution of the SCS includes the hemipelagic Oligocene sediments, implying the existence of deep water environments during the early seafloor spreading stage of the SCS basin. The four major unconformities and some remarkabl ediagenetic features in upper Oligocene deposits indicate the strongest tectonic events in the region. From a careful comparison of lithologies and sedimentation rates, we conclude that the prominent differences in sedimentary environments between the southern and northern SCS were established only by ~3 Ma.  相似文献   

8.
The influence of changes in vegetation cover on short-term climate over the East Asian monsoon region is simulated using the Community Climate System Model Version 3.5.The results show the annual mean surface air temperature significantly decreases by 0.93°C in response to afforestation over the East Asian monsoon region.Also,surface air temperature decreases by 1.46 and 0.40°C in summer and winter,respectively.The cooling is caused by enhanced evapotranspiration(ET) produced by increased forest cover.Evapotranspiration is greater in summer than in winter,so summer cooling is greater than winter cooling.The annual mean precipitation increases in response to afforestation,with a maximum of 7% in April.Water vapor increases significantly because of greater latent heat flux release.Meanwhile,afforestation leads to higher surface roughness,which decreases surface wind speed and induces an ascending air motion.These factors can produce more clouds and precipitation.Moreover,the surface albedo and the reflective solar radiation are reduced in response to afforestation.  相似文献   

9.
Recently, the Tertiary red clay sequence underlying Pleistocene loess has attracted much attention. The remarkable progress is the recognition that the Tertiary red clay sequence is also wind-blown in origin, thus providing a good opportunity to reconstruct long-term monsoon changes. In contrast to the loess deposits, the magnetic susceptibility and the pedogenic characteristics are almost independent of each other in the red clay, thus challenging the validity of the readily measurable magnetic susceptibility in describing the monsoon history recorded by the red clay. With the objective to address the long-term East Asia summer monsoon evolution, the free to total Fe2O3 ratios were calculated in a continuous eolian red clay-loess sequence at Lingtai, the Chinese Loess Plateau, which has a thickness of 305 m and a basal age of 7.0 Ma. The seven million-year Fe2O3 ratio record from the red clay-loess sequence indicates that (ⅰ) variations of the free to total Fe2O3 ratios of the loess can correlate generally with the alternations of the loess and paleosol horizons; (ⅱ) the East Asia summer monsoon was stronger as a whole in Neogene than that in Quaternary; (ⅲ) the strongest East Asia summer monsoon may occur between 4.0 and 4.8 Ma. The relatively small ice volume and high global temperature may be responsible for the strong summer monsoon during the early Pliocene.  相似文献   

10.
Wu  FuLi  Fang  XiaoMin  Miao  YunFa  Dong  Ming 《科学通报(英文版)》2010,55(26):2981-2988
Two lacustrine sporopollen records obtained from the Qaidam Basin (in the non-monsoonal region) and the Linxia Basin (in the monsoonal transition zone) indicate that during the early Pleistocene open forest-steppe/steppe vegetation developed in the Qaidam Basin, while in the Linxia Basin an open cypress forest-steppe shifted to a conifer/conifer-steppe and then to open forest-steppe vegetation. Existing sporopollen records from the Chinese Loess Plateau (CLP) (in the monsoonal region) indicate that around the Sanmen Paleolake open forest-steppe shifted to pine/conifer-broadleaved mixed forest. The conifer cover then changed to a subtropical evergreen broadleaved forest distributed around the Nihewan Paleolake. These changes suggest that wetter conditions progressed from western China to the east, and the climate became more humid than that of today indicating a stronger Asian summer monsoon during the early Pleistocene.  相似文献   

11.
Jiang  XiuYang  He  YaoQi  Shen  ChuanChou  Kong  XingGong  Li  ZhiZhong  Chang  YuWei 《科学通报(英文版)》2012,57(7):795-801
An absolute-dated, bi-decadal-resolution, stalagmite oxygen-isotopic time series from Shigao Cave reveals the evolution of summer monsoon precipitation over the past 9.9 ka BP in northern Guizhou Province, Southwest China. The  18O-inferred climate conditions are divisible into three distinct stages: (1) a maximum humid era from 9.9-6.6 ka BP; (2) a gradual declining precipitation interval between 6.6-1.6 ka BP; and (3) a relatively low precipitation time window after 1.6 ka BP. Consistency of contemporaneous stalagmite Holocene 18O records between Shigao and other caves in the Indian and East Asian monsoon realms support the effect of primary orbital solar forcings on monsoonal precipitation. However, statistical analysis shows a significant spatial asynchroneity of the Holocene Optimum termination in the Asian monsoon territory. The Holocene Optimum ended at 7.2-7.4 ka BP in Oman, located in the Indian monsoon region, and at 5.6-5.8 ka BP in Central China, in the East Asian monsoon zone. In Southwest China, the termination occurred between these periods, at 6.6-7.0 ka BP, and was influenced by both monsoon systems. We propose that this spatially asynchronous ending of Holocene Optimum in Asia may be attributed to sea surface temperature changes in the western tropical Pacific, which is a primary moisture source for the East Asian monsoon.  相似文献   

12.
The southeastern Chinese Loess Plateau is the terminal deposition area of dusts transported by the East Asian winter monsoon and the frontal area penetrated by the East Asian summer monsoon,and thus a climate sensitive region.This paper reports a rock magnetic study of a Quaternary loess-paleosol section in such a region.We tried to reconstruct the paleoclimate evolution history in the region during 1.95–0.40 Ma with magnetic parameters.The results show a general up-section decreasing trend of the ratio of HIRM/(SIRM–IRM100 mT),indicating a long-term decreasing trend of hematite coercivities in the deposits,which can be mainly related to the cooling and aridification trend of the environment in interglacial depositional area and glacial dust source region.The ratio,lf/ARM,widely used to reflect the variations of magnetic mineral grain size,manifests a long-term increasing trend of the magnetic mineral grain size and tends to indicate an overall weakening trend of the East Asian summer monsoon that controlled the pedogenic intensity.Although the regional multi-segmented paleoclimatic records revealed by several magnetic parameters in our study,the long-term Asian cooling and aridification trend inferred here is of global correlation significance.  相似文献   

13.
Wang Y  Cheng H  Edwards RL  Kong X  Shao X  Chen S  Wu J  Jiang X  Wang X  An Z 《Nature》2008,451(7182):1090-1093
High-resolution speleothem records from China have provided insights into the factors that control the strength of the East Asian monsoon. Our understanding of these factors remains incomplete, however, owing to gaps in the record of monsoon history over the past two interglacial-glacial cycles. In particular, missing sections have hampered our ability to test ideas about orbital-scale controls on the monsoon, the causes of millennial-scale events and relationships between changes in the monsoon and climate in other regions. Here we present an absolute-dated oxygen isotope record from Sanbao cave, central China, that completes a Chinese-cave-based record of the strength of the East Asian monsoon that covers the past 224,000 years. The record is dominated by 23,000-year-long cycles that are synchronous within dating errors with summer insolation at 65 degrees N (ref. 10), supporting the idea that tropical/subtropical monsoons respond dominantly and directly to changes in Northern Hemisphere summer insolation on orbital timescales. The cycles are punctuated by millennial-scale strong-summer-monsoon events (Chinese interstadials), and the new record allows us to identify the complete series of these events over the past two interglacial-glacial cycles. Their duration decreases and their frequency increases during glacial build-up in both the last and penultimate glacial periods, indicating that ice sheet size affects their character and pacing. The ages of the events are exceptionally well constrained and may thus serve as benchmarks for correlating and calibrating climate records.  相似文献   

14.
The modern atmospheric observation and literatural historical drought-flood records were used to extract the inter-decadal signals of dry-wet modes in eastern China and reveal the possible relationship of global and China temperature changes associated with the East Asian summer monsoon advances.A climate pattern of "wet-north and dry-south" in eastern China and cool period in China and globe are associated with the strong summer monsoon that can advance further to the northernmost part in the East Asian monsoon region.On the contrary,a climate pattern of "dry-north and wet-south" in eastern China and a warm period in China and globe are associated with the weaker summer monsoon that only reaches the southern part in the region.An interdecadal oscillation with the timescale about 60 years was found dominating in both the dry-wet mode index series of the East Asian summer monsoon and the global temperature series after the secular climate states and long-term trend over inter-centennial timescales have been removed.  相似文献   

15.
Based on the concept of East Asia-Pacific (EAP) teleconnection which influences East Asian summer monsoon, an index for East Asian summer monsoon circulation anomaly was defined and it was pointed out that this index can describle the interannual variation character of summer climate in East Asia, especially in the Yangtze River and Huaihe River Valley.  相似文献   

16.
The International Geosphere Biosphere Program (IGBP), which promotes better understanding of the living environment, was initiated in the early 1990s. IGBP and other programs have uncovered much evi-dence that the Earth system is complex and nonlinear, ex…  相似文献   

17.
Using meteorological observations, proxies of precipitation and temperature, and climate simulation outputs, we synthetically analyzed the regularities of decadal-centennial-scale changes in the summer thermal contrast between land and ocean and summer precipitation over the East Asian monsoon region during the past millennium; compared the basic characteristics of the East Asian summer monsoon (EASM) circulation and precipitation in the present day, the Little Ice Age (LIA) and the Medieval Warm Period (MWP); and explored their links with solar irradiance and global climate change. The results indicate that over the last 150 years, the EASM circulation and precipitation, indicated by the temperature contrast between the East Asian mainland and adjacent oceans, had a significant decadal perturbation and have been weaker during the period of rapid global warming over the past 50 years. On the centennial time scale, the EASM in the MWP was strongest over the past 1000 years. Over the past 1000 years, the EASM was weakest in 1450?C1570. When the EASM circulation was weaker, the monsoon rain belt over eastern China was generally located more southward, with there being less precipitation in North China and more precipitation in the Yangtze River valley; therefore, there was an anomalous pattern of southern flood/northern drought. From the 1900s to 1920s, precipitation had a pattern opposite to that of the southern flood/northern drought, with there being less precipitation in the Yangtze River valley and more precipitation in North China. Compared with the case for the MWP, there was a longer-time-scale southern flood/northern drought phenomenon in 1400?C1600. Moreover, the EASM circulation and precipitation did not synchronously vary with the trend of global temperature. During the last 150 years, although the annual mean surface temperature around the world and in China has increased, the EASM circulation and precipitation did not have strengthening or weakening trends. Over the past 1000 years, the weakest EASM occurred ahead of the lowest Northern Hemispheric temperature and corresponded to the weakest solar irradiance.  相似文献   

18.
High-resolution pollen records from 6 small lakes in the Tibetan Plateau provided the details of evolution of South Asian monsoon since the Last Glacial Maximum. Prior to 16 kaBP, the region was a desert-steppe characterized by cold and dry climates, the January temperature was 7 -10℃lower than that of present and the annual precipitation only accounted for 40% of the present. The temperature and precipitation increased gradually and trees began to live in the region after 12 kaBP, but during the interval from 9.2 to 6.3 kaBP, forest and forest-meadow appeared occasionally. From 8 to 5 kaBP, both January and July temperature was 2-3℃ higher and annual precipitation was also about 200 mm higher than that of the present. After 5 kaBP, temperature and precipitation decreased linearly and steppe vegetation began to degenerate.  相似文献   

19.
中国西部绿化对东亚季风气候影响的数值模拟   总被引:3,自引:1,他引:3       下载免费PDF全文
中国西部大开发战略中的生态环境建设将在西部地区引起显著的地表覆盖变化。根据最新的全球地表特征数据库资料和21世纪初中国西部生态环境三大重点建设工程的具体规划,得出两种植被,即现实植被和虚拟植被。并利用RIEMS—TEA模式,通过一次敏感性试验,发现西部地区绿化明显影响东亚的季风系统和中国东部季风区气候。模拟试验显示,中国西部绿化会明显增强东亚夏季风,这将会加强中国东部由南向北的水汽输送,并有利于输送邻近海洋的水汽到大陆,使得中国大陆东部季风区整体出现降温、增湿和降水增加。而且,温度、湿度、气压和风速受影响的程度在垂直方向上都已超出了边界层之外。  相似文献   

20.
The mid-Holocene in China is traditionally thought to be a warm and humid period with a strong sum-mer monsoon, and is often termed the Holocene Climatic Optimum or Megathermal Period. Here we present lakegeomorphologic and lithologicai evidence from the Alashan Plateau, part of the Mongolian Plateau, that indicates stronglake desiccation during the mid-Holocene. High resolution pollen data from Zhuyeze Lake, at the present summermonsoon margin, is also presented. These data show that present lakes and wetlands in the Juyanze Lake basin west of the Badain Jaran desert, in the Zhuyeze Lake basin between the Badain Jaran and Tengger deserts, and in lakes in the eastern Tengger desert, dried or experienced low lake levelsin the mid-Holocene around 5000-7000 cal yr BP. Pollen data further indicate that the vegetation cover declined in both the local areas and in the Qilian Mountains, suggesting the climate was drier than that associated with the presentAsian summer monsoon. This mid-Holocene drought interval was present throughout a quite large region of the south In-ner Mongolian Plateau. The period was also probably colder,at least in the high Asian plateaus and mountains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号