共查询到20条相似文献,搜索用时 0 毫秒
1.
《云南民族大学学报(自然科学版)》2016,(1):10-13
以醋酸锂和醋酸锰为原料,浓硝酸为辅助氧化剂,在温度600℃、时间3 h下采用无焰燃烧合成尖晶石型Li Mn2O4锂离子电池正极材料,研究了不同浓度硝酸对制备尖晶石型Li Mn2O4的影响.通过XRD和SEM分别研究了产物的物相组成及微观形貌;通过电性能测试研究了产物的比容量变化.实验结果表明,当n(Li)∶n(Mn)=1∶2(mol/mol)时,可得到Li Mn2O4单相,硝酸浓度对燃烧产物颗粒影响也较大;硝酸浓度为15 mol/L时产物初始放电比容量为112.1 m Ah/g,40次充放电循环后,放电比容量为99.0 m Ah/g,容量保持率为88.3%,具有较好的容量及存储性能. 相似文献
2.
文章采用高温固相法合成尖晶石LiMn2O4,并采用液相包覆的方法对其进行改性处理。采用XRD、SEM、XPS以及电池测试系统等,研究了所制备材料的结构、组成、性能和包覆机理。实验结果表明:表面处理后的LiMn2O4循环性能显著提高,以A12O3对尖晶石LiMn2O4进行表面包覆,使LiMn2O4颗粒不与电解液直接接触,可以防止锰离子溶解在电解液中,获得结构稳定、循环性能优异的锂离子电池正极材料;同时Al2O3会和电解液中微量的HF反应,减小了HF对锰离子溶解的加速作用。 相似文献
3.
采用液相无焰燃烧法在500℃反应1 h,然后在600℃二次焙烧3、6、9 h和12 h制备了尖晶石型Li1.05Ni0.05Mn1.90O4正极材料.结果表明,不同二次焙烧时间制备的Li-Ni复合共掺材料没有改变LiMn2O4的尖晶石结构,随着焙烧时间的增加,颗粒尺寸增大,结晶性提高.二次焙烧时间为9 h的Li1.05Ni0.05Mn1.90O4样品的颗粒尺寸约为70~100 nm,具有优异的电化学性能,在1 C(1 C=148 mA·h·g-1)倍率,初始放电比容量为94.8 mA·h·g-1,400次循环后展现出72.15%的容量保持率;在5 C下初始放电比容量可达到89.7 mA·h·g-1,800次循环后,仍能维持70.79%的容量保持率.并且具有较小的电荷转移电阻和较低的表观活化能.Li-Ni复... 相似文献
4.
尖晶石型LiMn2O4 电极材料的制备及性能研究 总被引:9,自引:0,他引:9
以硝酸锰、硝酸锂和尿素为原料制备尖晶石型LiMn2O4 锂离子电池电极材料, 考察了Li 和Mn 的比例、尿素用量、预置炉温、焙烧温度及时间等工艺条件对合成产物的组成结构及电化学性能的影响。最佳工艺条件下制备的产物具有纯净的尖晶石结构, 均一的颗粒度及优良的电化学性能。 相似文献
5.
为进行尖晶石LiMn2O4的改性优化,合成了大小为100~400 nm,呈八面体形貌的LiMn2O4尖晶石单晶,并采用XRD、SEMI、CP等方法进行了分析,旨在对该尖晶石单晶的充、放电性能进行表征. 相似文献
6.
为获得无钴高镍正极材料LiNi0.6Mn0.4O2(NM64)的最佳合成方法,采用水热法和共沉淀法对其进行制备,确定共沉淀法为NM64材料的较佳制备方法。为进一步提高共沉淀法制备的NM64材料(下称“NM64-C”)的倍率性能和循环性能,采用Ce离子掺杂对NM64-C进行了优化。结果表明:摩尔比为0.02的Ce离子(0.02Ce)掺杂的NM64-C材料在0.3 C下100次循环后的容量保留率为79.5%,明显优于基材NM64-C(63.9%)。0.02Ce掺杂的NM64-C材料展现出了良好的电化学性能。 相似文献
7.
采用共沉淀法将质量分数3%的Al取代Mn掺入二元Ni0.90Mn0.10OH2前驱体中,经高温固相烧结合成一种无Co高Ni三元正极LiNi0.90Mn0.07Al0.03O2,并通过X射线衍射(X ray diffraction, XRD)、扫描电子显微镜(scanning electron microscope, SEM)、能量弥散射线谱(energy dispersive spectroscopy, EDS)等表征手段进行分析,探讨了Al3+掺杂对材料结构及性能的影响。结果表明,引入Al3+后,Ni0.90Mn0.07Al0.03OH2一次颗粒明显变细,对应LiNi0.90Mn0.07Al0.03O2结晶度明显提高... 相似文献
8.
液相还原法制备正极材料LiFePO4/C 总被引:1,自引:0,他引:1
以三价铁源FePO4·2H2O,LiOH,草酸为原料,乙二醇为还原剂,葡萄糖为碳源,采用液相还原法结合后续热处理法制备了橄榄石型锂离子正极材料LiFePO4/C.利用XRD、SEM对其结构和形貌进行分析表明:合成的材料具有良好的晶体结构和表面形貌,颗粒粒径在200~400 nm之间;通过电化学性能测试,表明材料具有较好的充放电性能,5 C倍率放电容量为103.9 mAh/g,并且也有较好的循环性能.该方法制备工艺简单,热处理时间相对常规热处理的方法大为减少,极大地减少了能耗,同时以三价铁为原料降低原料成本,为LiFePO4产业化应用开拓了新的思路. 相似文献
9.
水热法制备Co掺杂改性的锂离子电池层状正极材料LiV3-xCoxO8。经X射线衍射和扫描电镜分析表征材料的晶体结构和形貌,恒流充放电循环测试其电化学性能,结果表明:随着Co掺入量增加,材料初始放电容量有所降低,但循环性能得到明显改善,当掺杂量控制在0.01≤x≤0.08范围内时,LiV3-xCoxO8材料的循环性能和充放电可逆性均比未掺杂LiV3O8材料有明显改善。其中,LiV2.99Co0.01O8和LiV2.97Co0.03O8在40次循环之后,都能保持146 mAh.g-1的放电比容量。 相似文献
10.
采用控制结晶法制备的球形MnCO3前驱体与Li2CO4在高温煅烧条件下进行固相反应合成了高能量密度尖晶石型LiMn2O4微球。通过扫描电子显微镜对不同反应时间形成的球形MnCO3产物观察表明,球形MnCO3前驱体是由许多小粒子通过静电作用力组装而成的球形微米二次粒子,其形成经历了一个成核一聚结的过程。球形MnCO3前驱体经高温锂化后可以直接获得高振实密度的LiMn2O4微球(1.8g·cm^-3),煅烧前后形貌未发生明显改变。LiMn2O4微球在常温和高温(55℃)条件下的电化学性能测试表明,在0.5C(1C=148inA·g^-1)倍率时,常温下的首次充放电比容量分别为117.3和116.0mAh·g^-1,充放电能量密度分别为480.8和462.0Wh·kg^-1,50次循环后的放电能量密度保持率为98.8%;高温下的首次充放电比容量分别为119.6和115.6mAh·g^-1,充放电能量密度分别为487.6和462.9Wh·kg^-1,50次循环后的放电能量密度保持率仍达到92.3%。 相似文献
11.
以CrF3为掺杂原料,采用高温固相制备了锂离子电池正极材料尖晶石LiMn2-xCrxO4-3xF3x.采用XRD、SEM和充放电能实验对其结构和性能进行了表征.实验结果表明,阴阳离子共掺杂对尖晶石LiMn2O4的循环性能有一定的改善.其中LiMn2-xCrxO4-3xF3x(x=0.10)室温下循环20次后放电比容量衰减率为首次容量(120.58 mAh/g)的4.73%. 相似文献
12.
以偏钒酸铵和硝酸铁为原料,通过水热法制备前驱体,然后分别在300℃和550℃热处理,成功制备出微米棒状钒酸铁材料.采用热分析(TG-DTA)、X-射线衍射(XRD)、粒度分析和扫描电镜(SEM)对其结构进行了表征,同时对材料进行了恒流充放电循环电化学性能测试.结果显示,钒酸铁材料具有微米棒状结构,长度约为1~2μm,粒径主要集中在0.6~0.8μm.300℃热处理样品在50mA/g放电电流密度下其首次放电比容量为228mAh/g,40周循环后比容量保持在130mAh/g.通过XPS分析了脱/嵌锂过程的机理,结果显示该材料充放电过程中同时发生了Fe和V的氧化还原反应,共同提供嵌锂容量. 相似文献
13.
通过聚甲基丙烯酸甲酯(PMMA)胶晶模板法制备尖晶石型LiMn2O4材料,并探讨焙烧温度对材料性能的影响.运用热重分析(TG)、X线衍射(XRD)、扫描电镜(SEM)、充放电测试和循环伏安测试等方法对LiMn2O4样品的结构、形貌以及电化学性能进行表征和测试.研究结果表明:在不同温度下制备的LiMn2O4样品均具有较好的尖晶石型结构,且粒径分布均匀:在700℃时制备的LiMn2O4样品(S-700)具有最佳的电化学性能,在3.0~4.4 V时,0.2C倍率首次放电比容量为130.9 mA·h/g; 0.5C倍率首次放电比容量为126.4 mA·h/g,50次循环之后容量仍有102.7 mA·h/g,具有良好的循环稳定性. 相似文献
14.
谷芳 《哈尔滨商业大学学报(自然科学版)》2012,(3):362-364
Li4Ti5O12负极材料因其在充放电过程中零应变的优势,得到了广泛关注,成为锂离子电池负极材料的研究热点.采用液相法制备了Li4Ti5O12负极材料.通过正交实验,确定了Li4Ti5O12的最佳制备工艺条件:烧结温度为750℃;烧结时间为8 h;LiOH.H2O为锂源;原料中锂钛的物质的量比为0.85.该条件下制备的材料具有较好的电化学性能,首次放电比容量可达到191.61 mAh/g. 相似文献
15.
以氧化铁为铁源,通过简单的固相碳热法制备LiFePO4-MWCNTs复合正极粉体材料.利用XRD和SEM表征LiFePO4-MWCNTs复合材料的结构和表面形貌.利用EIS、CV和充放电测试实验测量LiFePO4-MWCNTs复合材料的电化学性能.XRD结果显示复合材料为橄榄石型的磷酸铁锂纯相,多壁碳管在正极材料中将颗粒相连,增加导电面积,形成三维网络结构,为颗粒之间提供附加的导电通道.通过添加质量分数为5%的多壁碳管的方法对LiFePO4正极材料导电通道进行改善.在0.5C充放电速率下首次放电比容量可以达到151.6mAh/g,充放电50次后,放电比容量还能保持在145.5mAh/g,在1C充放电速率下比容量保持在140mAh/g,2C时比容量保持在130mAh/g.随着充放电速率的增加,锂离子电池的性能也更加优越. 相似文献
16.
采用蔗糖辅助燃烧法制备了富锂型锂离子电池正极材料Li1.1Mn2O4, XRD表明合成的Li1.1Mn2O4样品具有完整的尖晶石结构. SEM显示样品是由纳米粒子组成. 0.5 C 初始放电比容量为115 mAh/g, 10 C放电比容量可达109 mAh/g. 10 C倍率下循环200次容量保持率为90%. 实验结果表明该材料倍率和循环性能均优良. 相似文献
17.
由高温固相法合成了锂离子电池正极材料尖晶石LiCexMn2-xO4(x=0~0.5),并经XRD和电化学等测试。实验结果表明,材料LiCe0.03Mn1.97O4在常温和高温下都具有较好的循环性能和电化学性能。 相似文献
18.
采用机械液相活化结合喷雾干燥法制备LiFePO4/C正极材料,并用该材料制备容量为10A.h的动力电池.通过X-射线衍射、扫描电镜、振实密度和电导率测试对材料的物理性能进行综合分析,采用循环伏安、循环寿命和不同倍率下充放电性能测试对电池进行电化学研究,由过充、冲击、针刺等实验检测电池的安全性.结果表明:该材料晶型完整、颗粒均匀、振实密度高、导电性好;制备的单体动力电池在1.0倍率下循环150次后容量保持率仍然超过98%,大倍率充放电性能好,且安全性较高. 相似文献
19.
锂离子电池正极材料LiFePO4的合成及电化学性能 总被引:1,自引:0,他引:1
采用固相合成法在不同温度制度下合成掺杂碳的LiFePO4正极材料,计算出各样品的结构参数并对各样品进行电化学测试·结构参数的计算结果表明:合成温度升高,样品的结晶程度更好,结构更紧凑,更趋稳定·电化学测试结果说明:700℃合成的产物具有良好的电化学性能,在0 1C倍率下放电,其室温初始放电容量为140 4mAh/g,循环10次后容量衰减较小·此条件合成的LiFePO4放电容量与目前工业化生产的LiCoO2相当,具有良好的应用前景· 相似文献
20.
采用体相掺杂法对LiFePO4进行改性,采用Mg对LiFePO4进行掺杂,研究Mg的掺杂量对LiFePO4材料电化学性能的影响.研究结果表明,经掺杂改性后的LiFe1-xMgxPO4(x=0.01,0.05,0.10,0.15)材料的充放电容量和循环性能均有所提高,其中,样品LiFe0.85Mg0.15PO4的性能最佳,其首次放电容量为125.6 mA·h/g,循环6次后容量仍达123.0 mA·h/g;Mg部分取代LiFePO4材料中的Fe后所得材料的电子电导率提高了1×106倍,从而提高了材料的电化学性能. 相似文献