首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对当前卷积神经网络未能充分利用浅层特征信息, 并难以捕获各特征通道间的依赖关系、 丢失高频信息的问题, 提出一种新的生成对抗网络用于图像超分辨率重建. 首先, 在生成器中引入WDSR-B残差块充分提取浅层特征信息; 其次, 将GCNet模块和像素注意力机制相结合加入到生成器和鉴别器中, 学习各特征通道的重要程度和高频信息; 最后, 采用谱归一化代替不利于图像超分辨率的批规范化, 减少计算开销, 稳定训练. 实验结果表明, 该算法与其他经典算法相比能有效提高浅层特征信息的利用率, 较好地重建出图像的细节信息和几何特征, 提高超分辨率图像的质量.  相似文献   

2.
邓酩  柳庆龙  侯立宪 《科学技术与工程》2023,23(31):13472-13481
针对目前基于深度学习的超分辨率重建图像存在的纹理等高频信息丢失问题,提出了多尺度残差生成对抗网络的图像超分辨率重建算法。首先,使用Dense-Res2Net模块替代SRGAN生成网络中原本的残差模块,并且组合特征压缩与激发网络(SENet)从多个尺度自适应地提取浅层特征信息。其次,引入全变分正则化损失(TV loss)指导生成器训练。最后,使用Wasserstein距离优化对抗损失,提高网络训练稳定性。实验结果表明,该算法重建出的图像在视觉效果上保留了更加丰富的高频细节,与当前主流超分算法相比,该方法不仅有更高的峰值信噪比(PNSR)与结构相似性(SSIM),且学习感知图像块相似度(LPIPS)的分数上均优其他算法。  相似文献   

3.
现有的图像超分辨率重建方法都较少考虑真实低分辨率图像中包含的噪声信息,因此会影响图像的重建质量.受真实图像去噪算法的启发,本文引入一个噪声分布收集网络来收集低分辨率图像的噪声分布信息,并采用生成对抗网络的模型设计,提高含噪声图像的重建质量.噪声分布信息会分别输入到超分辨率重建网络和判别网络,在重建过程中去除噪声的同时保证有用高频信息的恢复,另外由于判别网络的能力对整个模型的性能有着重要影响,选择使用 U-Net 网络来获得更好的梯度信息反馈.与经典图像超分辨率重建算法的对比以及消融实验表明,使用噪声收集网络和 U-Net 判别网络后,本文模型在噪声低分辨率图像重建任务中获得了更好的性能.  相似文献   

4.
深度学习在一定程度上解决了从低分辨率图像中恢复出高分辨率图像这一图像超分辨率问题。目前基于生成对抗网络(generative adversarial network,GAN)的方法可以从超分辨率数据集中学习低/高分辨率图像映射关系,从而生成具有真实纹理细节的超分辨率图像。然而,基于GAN的图像超分辨率模型训练通常不稳定,其结果往往带有纹理扭曲和噪声等问题,提出了采用掩膜(mask)模块以辅助对抗网络训练。在网络训练过程中,掩膜模块根据生成网络输出的超分辨率结果和原始高分辨率图像,计算得到相应观感质量信息,并进一步辅助对抗网络训练。在实验中对3个最近提出的基于GAN的图像超分辨率模型进行修改,引入掩膜模块,修改后的模型在超分辨率图像输出的观感和真实感量化指标上均有明显地提升。掩膜模块的优点是可以进一步提升基于GAN的图像超分辨率网络输出的超分辨率图像观感质量,并仅需对生成对抗网络训练框架进行修改,因此适用于多数基于GAN的图像超分辨率模型的进一步优化。  相似文献   

5.
李若琦  苍岩 《应用科技》2024,(2):112-119
针对图像盲超分辨率网络计算参数多、模型庞大的问题,对快速且节省内存的轻量级图像非盲超分辨率网络(fast and memory-efficient image super resulotion network, FMEN)进行改进,提出了一种轻量级的快速且节省内存的图像盲超分辨率网络(fast and memory-efficient image blind super resulotion network, FMEBN)。首先,通过图像退化模块模拟部分真实世界退化空间,使用退化预测模块预测低分辨率(low resolution, LR)图像的退化参数;然后,为能有效利用退化先验信息指导并约束网络进行重建,使用动态卷积对原网络特征提取、重建模块、高频注意力块(high frequency attention block, HFAB)结构进行改进;最后,使用生成对抗网络(generative adversarial network, GAN)对FMEN训练策略与损失函数进行优化,减小真实数据与生成数据的差异,生成更加真实、清晰的纹理、轮廓。实验结果表明,在合成图像数据集和真实图像数据集R...  相似文献   

6.
高分辨率磁共振图像(MRI, magnetic resonance images)能够提高疾病诊断精度,但高分辨率MRI图像的获取十分困难。基于深度学习的图像超分辨率(SR, super resolution)技术可有效地提高图像分辨率。近年来,生成对抗网络(GANs, generative adversarial networks)为3D-MRI图像SR重建提供了新思路。相较于传统的基于深度卷积神经网络(DCNN, deep convolutional neural network)的SR算法,GANs网络以人类视觉机制为目标,且引入判别函数,使重建3D-MRI图像更接近真实图像。研究采用增强超分辨率生成对抗网络(ESRGAN, enhanced super-resolution generative adversarial networks)对3D-MRI图像进行SR重建;并利用3D-MRI图像的跨层面自相似性,将重建任务降维到2D,在保证重建效果的基础上,减少了网络训练时间和内存需求。通过与其他传统算法和基于DCNN算法对比实验表明,提出的算法能够进一步提高3D-MRI图像的视觉...  相似文献   

7.
基于神经网络的图像超分辨率方法往往存在重建图像纹理结构模糊、缺失高频信息的问题。为了解决该问题,在SRGAN的基础上提出一种多尺度并联学习的生成对抗网络结构,其中生成模型由两个不同尺度的残差网络块组成,首先对提取的低分辨率图像通过两个子网络的多尺度特征学习,然后使用融合网络进行残差融合,融合不同尺度高频信息,最终生成高分辨图像。在Set5、Set14、BSD100基准数据集以及SpaceNet卫星图像数据集上的实验结果证明了该算法在恢复低分辨率图像的细节纹理信息具有良好效果。  相似文献   

8.
超分辨率生成对抗网络(SRGAN)的高分辨率图像质量较传统方法有明显提升,然而其存在训练过程不稳定、图像浅层特征未充分使用等问题,很大程度上影响生成图像的质量.为此,提出一种特征增强改进的SRGAN模型,使用信息蒸馏块.通过对长短途特征在图像通道上的拼接增强特征纹理信息,利用压缩单元消除图像特征中的冗余信息.此外,使用相对平均鉴别器替代原始SRGAN中的二分类鉴别器,保证生成对抗网络训练的稳定性.本研究基于4倍放大因子进行超分辨重建任务,并在BSD100和SET14数据集上进行实验结果的质化和量化评价.实验表明,该方法较之SRGAN在训练过程中具有更好的稳定性,生成的图像具有更清晰的细节纹理,取得了更佳的图像超分辨率重建效果.  相似文献   

9.
图像超分辨率重建(super-resolution, SR)是指从观测到的低分辨率图像重建出相应的高分辨率图像,在目标检测、医学成像和卫星遥感等领域都有着重要的应用价值.近年来,随着深度学习的迅速发展,基于深度学习的图像超分辨率重建方法取得了显著的进步.为了把握目前基于深度学习的图像超分辨率重建方法的发展情况和研究热点,对一些最新的基于深度学习的图像超分辨率重建方法进行了梳理,将它们分为两大类(有监督的和无监督的)分别进行阐述.然后,在公开的数据集上,将主流方法的性能进行了对比分析.最后,对基于深度学习的图像超分辨率重建方法进行了总结,并对其未来的研究趋势进行了展望.  相似文献   

10.
大部分基于卷积神经网络的图像超分辨率方法都是采用端到端的模式,这类图像超分辨率方法往往存在重构图像纹理边缘模糊、高频信息缺失的问题.为了改善该问题,在SRGAN(super-resolution generation adversarial networks)的基础上提出了一种基于对抗性图像边缘学习的深层网络模型,将图...  相似文献   

11.
SRGAN是一种基于生成对抗网络的超分辨重建方法,其生成的高分辨率图像质量较传统方法有着明显提升,然而SRGAN存在着训练过程不稳定,图像浅层特征未充分使用等问题,很大程度上影响到了生成图像的质量。本文提出了一种特征增强改进的SRGAN模型,该模型使用信息蒸馏块进行特征纹理信息的增强,并消除图像特征中的冗余信息。此外,使用相对平均鉴别器替代原始SRGAN中的二分类鉴别器,保证了GAN网络训练的稳定性。本文基于4倍放大因子的超分辨重建任务,在BSD100数据集上进行实验结果的质化评价和量化评价。实验表明,本文方法较之SRGAN在训练过程中具有更好的稳定性,生成的图像具有更清晰的细节纹理,取得了更佳的图像超分辨率重建效果。  相似文献   

12.
为了从一幅包含文字、公式和图形等内容的低分辨率文本图像重建高分辨率图像,提出了一种获取重建图像先验知识的新方法.利用实例图像和图像降质模型建立图像库,图像重建时,将低分辨率观测图像分成若干子块,每个子块分别从图像库中找到一块最佳匹配的高分辨率实例图像块,将这些实例图像块依次拼成一幅大图,并把该大图各点的灰度值作为重建图像各点灰度值的均值,以此先验知识采用最大后验概率(MAP)准则估计出高分辨率文本图像.实验结果表明本文的方法能够取得较好的重建效果.  相似文献   

13.
人脸图像超分辨率技术,又名人脸幻觉,可根据给定的低分辨率人脸图像中恢复出对应的高分辨率人脸图像.该技术无论是在学术界还是在工业界都具有非常广泛的应用前景.人脸,作为一种具有高度结构先验的对象,其结构先验可以为网络提供结构信息,从而辅助人脸图像超分辨率任务的执行,改善人脸图像超分辨率性能.因而许多基于结构先验的人脸图像超分辨率方法被提出.为了了解和掌握基于结构先验的人脸图像超分辨率技术的发展状况,本文对其进行了系统的总结与归类,主要从先先验、并行先验、中间先验和后先验,四个方面对基于结构先验的人脸图像超分辨率技术进行概述.最后分析基于结构先验的人脸图像超分辨率技术存在的问题与挑战.  相似文献   

14.
针对图像超分辨率重建算法在图像高频信息恢复过程中特征提取不充分、利用效率不高、重建高频细节能力不足等问题,本文提出了一种基于信息蒸馏级联伸缩网络的图像超分辨率重建算法.首先,构建特征可伸缩的信息蒸馏块,通过扩大信息蒸馏中输入信息的特征感受野,以及采用通道注意力提取感兴趣信息,解决了信息蒸馏的图像超分辨率重建非线性映射过程中特征提取不充分的问题;然后,设计级联残差叠加映射块,该块将多个残差块组合在一起,通过将残差结构中的残差部分引出并采用级联叠加的方式,增加了信息蒸馏块间信息的传递,使提取的特征信息包含更多细节.实验结果表明,本文算法重建图像相比其他对比算法更为清晰,峰值信噪比(PSNR)和结构相似度(SSIM)均有较大的提升.  相似文献   

15.
图像超分辨率一直都是图像处理领域的研究热点,提出了把图像质量评价方法用于图像超分辨率的方法.把结构相似性度量用于块匹配,搜索图像块的相似块,利用找到的相似块的加权平均重构高分辨率图像.在低分辨率图像上进行了有噪声,无噪声情况下的两种实验,实验结果证明本文提出的方法在相同实验条件下比TV,Sparsity,Softcut取得了更好的结果.进一步分析实验可以发现用结构相似度搜索图像的相似块,使得重构后的图像更加充分地保留了原图像的结构信息.本方法提供了处理图像的新思路,使得对图像质量评价的研究和图像处理的研究可以结合起来共同推动图像处理方法的创新.  相似文献   

16.
提出了一种基于神经网络的超分辨率重构算法.首先用基于l1范数的最小全变分约束对输入的低分辨率图像进行去模糊处理,得到初始复原图像;再根据结构相似度原则选择初始复原图像在训练集中最相近的M幅图像,并加权求和作为神经网络的初始输出;结合贝叶斯后验概率,用RBF神经网络进行迭代训练,最后输出复原的高分辨率图像.算法充分利用了不同人脸图像之间的相似性,并加入了最小全变分约束,以保持图像边缘的奇异性及非边缘的平滑性.实验结果表明:算法能有效提高下采样及模糊人脸图像的分辨率,具有一定的实用价值.  相似文献   

17.
文中构建了超分辨率重建图像的一般框架.在对图像模糊的不确定性和复杂性作一定限制条件下,讨论采用最小二乘方规整化方法重建除运动外其它因素引起降质的低分辨率图像;并进一步提出了采用改进的递归最速下降迭代算法实现多帧图像的超分辨率重建.计算机模拟结果表明,该方法具有较好的重建图像质量.  相似文献   

18.
笔者提出了一种基于并行遗传算法的图像(序列)超分辨率重建的新框架方法.文中给出了算法原理及步骤,并对算法特点和性质进行了详细的分析,与直接使用迭代正则化相比,通过实验的方法选取正则化参数的方法,其最大优势是可通过实验来调整正则化参数,使算法更易搜索到最佳图像估计.最后给出了实验结果以及详细的实验分析,并将其与其它正则化图像插值技术进行了比较,证明是一种新颖实用的方法.  相似文献   

19.
提出了一种在马尔科夫网络框架下基于样本块的图像超分辨率算法。算法根据相似性选取多个样本块作为图像重建的候选,在候选集中计算图像块先验概率和图像块之间的相容性,最后在马尔科夫框架下选取最优图像块,合成最终的高分辨率图像。实验证明本文提出的算法具有较好的超分辨率效果。  相似文献   

20.
图像超分辨率重建是指从一幅或多幅低分辨率、低质量图像中产生高分辨率、高质量图像的数字信号处理技术.本文分析了基于多幅的图像超分辨率重建方法,并讨论了目前基于多幅的图像超分辨率重建有待解决的问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号