首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 222 毫秒
1.
The dry impact wear behavior of bainite ductile cast iron was evaluated under three different impact loads for 30000 cycles. The strain-hardening effects beneath the contact surfaces were analyzed according to the surfaces’ micro-hardness profiles. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to observe the worn surfaces. The results indicated that the material with the highest hardness was the one continuously cooled at 20°C, which exhibited the lowest wear rate under each set of test conditions. The hardness of the worn surface and the thickness of the hardened layer increased with the increases in impact load and in the number of test cycles. The better wear performance of the sample cooled at 20°C is attributed to its finer microstructure and superior mechanical properties. All the samples underwent the transformation induced plasticity (TRIP) phenomenon after impact wear, as revealed by the fact that small amounts of retained austenite were detected by XRD.  相似文献   

2.
Friction and wear properties of nitrogen-implanted GCrI5 bearing steel and 40Cr structuralsteel were studied under different implantation conditions. It is found that physical and mechani-cal properties, as well as chemical properties of the surface layer are greatly changed by ionirradiation, such as the decrease of surface roughness, the increase of hardness accompanied withthe occurrence of compressive stress, etc.. The results of SEM and Ferro-spectroscopy show thatthese variations in surface properties closely associated with changes in the microstructure causegreat variations in friction and wear conditions, and mechanisms between implanted andunimplanted specimens. Changes in the surface microstructure with iron implantation were identi-fied by Auger electron spectroscopy, transmission electron microscopy and X-ray photoelectronspectroscopy. By means of the orthogonal experiment method, test results for each differentimplantation condition and original hardness of the materials under the same wear test conditionwere comprehensively analysed and discussed.  相似文献   

3.
A novel approach to produce an intermetallic composite coating was put forward. The microstructure, microhardness, and dry-sliding wear behavior of the composite coating were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrum (EDS) analysis, microhardness test, and ball-on-disc wear experiment. XRD results indicate that some new phases FeAl, Fe0.23Ni0.77Al, and Ni3Al exit in the composite coating with the Al2O3 addition. SEM results show that the coating is bonded with carbon steel metallurgically and exhibits typical rapid directional solidification structures. The Cr7C3 carbide and intermetallic compounds co-reinforced composite coating has a high average hardness and exhibits an excellent wear resistance under dry-sliding wear test compared with the Cr7C3 carbide-reinforced composite coating. The formation mechanism of the intermetallic compounds was also investigated.  相似文献   

4.
A series of novel steel–Ti(C,N) composites was fabricated by spark plasma sintering (SPS) and subsequent heat treatment. The hardness, indentation fracture resistance, and wear behaviour of the steel–Ti(C,N) composites were compared with those of the unreinforced samples, and their potentials were assessed by comparison with traditional cermet/hardmetal systems. The results showed that with the addition of 20wt% Ti(C,N), the wear rates of the newly examined composites reduced by a factor of about 2 to 4 and were comparable to those of cermets and hardmetals. The martensitic transformation of the steel matrix and the formation of in situ carbides induced by heat treatment enhanced the wear resistance. Although the presence of excessive in situ carbides improved the hardness, the low indentation fracture resistance (IFR) value resulted in brittle fracture, which in turn resulted in poor wear property. Moreover, the operative wear mechanisms were investigated. This study provides a practical and cost-effective approach to prepare steel–Ti(C,N) composites as potential wear-resistant materials.  相似文献   

5.
A series of novel steel–Ti(C,N) composites was fabricated by spark plasma sintering(SPS) and subsequent heat treatment. The hardness, indentation fracture resistance, and wear behaviour of the steel–Ti(C,N) composites were compared with those of the unreinforced samples, and their potentials were assessed by comparison with traditional cermet/hardmetal systems. The results showed that with the addition of 20 wt% Ti(C,N), the wear rates of the newly examined composites reduced by a factor of about 2 to 4 and were comparable to those of cermets and hardmetals. The martensitic transformation of the steel matrix and the formation of in situ carbides induced by heat treatment enhanced the wear resistance. Although the presence of excessive in situ carbides improved the hardness, the low indentation fracture resistance(IFR) value resulted in brittle fracture, which in turn resulted in poor wear property. Moreover, the operative wear mechanisms were investigated. This study provides a practical and cost-effective approach to prepare steel–Ti(C,N) composites as potential wear-resistant materials.  相似文献   

6.
Relative contribution of individual strengthening mechanisms to the yield strength of Mg–0–15 wt%Gd alloys were investigated.Alloys with different grain size were prepared by adding Zr and hot extrusion.Hardness and tensile/compression yield strength were tested on the alloys after solid solution treatment and extrusion.HallPetch constants were calculated with hardness and tensile/compressive data.The results showed that the hardness of Mg–Gd alloys with similar Gd content and different grain size were almost the same,which indicates that grain size had little effect on hardness.The hardness linearly increased with rising Gd content(d H_v/dc≈25 kg mm~(-2)/at%Gd).The tensile and compressive yield strengths enhanced with the increase of Gd content for all alloys in different conditions.In addition,the tensile/compressive(t/c)yield asymmetry of extruded alloys decreased with increasing Gd content.Large t/c yield asymmetry ratio(1.77)was observed for pure Mg,and with increasing Gd content this value decreased to 1.With the increasing of tensile strength,the stress intensity factor,k_y,decreased from 0.27 MPa m~(1/2)for Mg–2 wt%Gd alloy to 0.19 MPa m~(1/2) for Mg–5 wt%Gd alloy,then increased to 0.29 MPa m~(1/2) for Mg–15 wt%Gd alloy.However,k_yincreased linearly form 0.16–0.31 MPa for compression test.The influence of grain size strengthening was eliminated,and the yield strength of tension and compression both linearly increased with c~n,where c is the atom concentration of Gd,and n=1/2 or 2/3.  相似文献   

7.
Metallic hollow spheres are used as base materials in the manufacture of hollow sphere structures and metallic foams. In this study, steel hollow spheres were successfully manufactured using an advanced powder metallurgy technique. The spheres’ shells were characterized by optical microscopy in conjunction with microstructural image analysis software, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). The microscopic evaluations revealed that the shells consist of sintered iron powder, sintered copper powder, sodium silicate, and porosity regions. In addition, the effects of copper content on various parameters such as shell defects, microcracks, thickness, and porosities were investigated. The results indicated that increasing the copper content results in decreases in the surface fraction of shell porosities and the number of microcracks and an increase in shell thickness.  相似文献   

8.
The effect of alumina nanoparticle addition on the microstructure and tribological properties of a CuCrW alloy was investigated in this work. Mechanical alloying was carried out in a satellite ball mill. The tribological properties of the samples were evaluated using pin-on-disk wear tests with different pins (alumina, tungsten carbide, and steel pins). The results indicated that the tungsten carbide pin had a lower coefficient of friction than the alumina and steel pins because of its high hardness and low surface roughness. In addition, when the sliding rate was decreased, the weight-loss rate increased. The existence of alumina nanoparticles in the nanocomposite led to a lower weight-loss rate and to a change in the wear mechanism from adhesive to abrasive.  相似文献   

9.
The NiAl based materials including NiAl-TiC-Al2O3 composite,NiAl-Cr(Mo)-Hf-Ho eutectic alloy and NiAl-Cr(Mo)-CrxSy in situ composite were fabricated and their wear properties were tested at different temperatures.The results revealed that the NiAl-TiC-Al2O3 composite,NiAl-Cr(Mo)-Hf-Ho eutectic alloy and NiAl-Cr(Mo)-CrxSy in situ composite exhibited the excellent wear properties between 700℃ and 900℃.The microstructure observations exhibited that the self-lubricant films formed on the worn surfaces during the dry sliding test at high temperature,which decreased the wear rate and friction coefficient significantly.TEM observation on the self-lubricant film revealed that it was mainly comprised by ceramic amorphous and nanocrystalline.Compared with the NiAl-TiC-Al2O3 composite,the NiAl-Cr(Mo)-CrxSy in situ composite has lower friction coefficient at low temperature.Such phenomena may be ascribed to the addition of sulfide which contributes much to the formation of self-lubricant,and moreover the TiC addition increase the strength of NiAl based material and its wear resistance.  相似文献   

10.
WCoB based cermet is a potential hard alloy to replace WC-Co cermets with high hardness and corrosion resistance. WCoB based cermets with different Cr doping contents were fabricated by spark plasma sintering in liquid phase sintering stage. The densification behavior, phase composition, microstructure and mechanical properties of Cr doped WCoB cermets were investigated by XRD, EDS and SEM. Due to the lower density of Cr,the density of WCoB cermets decreased with the increasing of Cr doping content. The phase composition consisted of Cr doped WCoB, unreacted W, Co–Cr binary binder phase. When the doping content exceeded11.736 wt%, the Cr enrichment zones appeared, which was harmful to the TRS. The increasing of Cr doping content contributed to the increase of unreacted W phases content and the formation of pores. The maximum value of Vickers hardness was 1751 Hv0.5 at 9.356 wt% Cr doping content. The variation trend was explained by first principle calculation, which is consistent with Hv-Zhou hardness model.  相似文献   

11.
选用单质粉(Ti,Si,C,Al)为原料,采用机械合金化法制备含有Ti3SiC2和TiC的混合粉体,然后将Ti3SiC2,TiC和Cu的混合粉体进行放电等离子烧结,以制备Cu/Ti3SiC2-TiC复合材料,并对其组织耐磨性进行了研究。实验结果表明,放电等离子烧结可制备致密的Cu/Ti3SiC2-TiC复合材料,复合材料的显微硬度随强化相(Ti3SiC2-TiC)掺加量的增加显著提高,当强化相掺加量为20 vol%时,复合材料的硬度值达1.58 GPa。Cu/Ti3SiC2-TiC复合材料的耐磨性随强化相含量增加显著提高,当强化相掺入量为20 vol%时,复合材料的耐磨性为纯Cu的4倍。  相似文献   

12.
本文对铜–石墨烯纳米片(GN)纳米复合材料的力学性能和摩擦学性能进行了实验研究。我们采用化学包覆法将银粒子包覆在GNs上,以避免其与铜的反应和金属间相的形成。分析了GN含量对制备的纳米复合材料的结构、力学性能和摩擦学性能的影响。结果表明,化学镀是一种有效避免铜与碳反应和金属间相形成的方法。GNs的加入显著提高了Cu纳米复合材料的力学性能和摩擦学性能。然而,GNs的添加需要谨慎进行,因为在达到一定的阈值后,其机械性能和摩擦学性能会受到负面影响。结果表明,GN含量为0.5vol%时,复合材料的硬度、磨损率和摩擦系数分别比铜纳米复合材料提高了13%、81.9%和49.8%。这些改进的性能是由于降低的晶体尺寸,GNs的存在,以及复合材料成分的均匀分布。  相似文献   

13.
A new nitriding process modifying both the surface and the matrix is proposed to improve the poor wear resistance and low hardness of the titanium alloy surface. The treatment of solid solution treatment, cold rolling and low temperature nitriding was used for surface modification. The results showed that the microstructure of the Ti–6Al–4V(TC4) titanium alloy sample changed from the original α+β phase to the residual α phase, metastable β phase and martensite α′ phase after solution treatment. The results of cold rolling experiments indicated that with the increase of rolling amount, many defects generated, and the grains were first elongated and then partially broken. During the process of low-temperature nitriding the recrystallization occurred, which effectively avoided the problem of coarse matrix structure. It has been found that after low-temperature nitriding, thin strip-like α-phase with dispersed distribution, which is a typical aging structure, formed. The XRD test results indicate that steady state nitrides Ti2N formed on the surface of the sample, but the content of Ti2N was relatively low. Based on the morphology of content of the surface and cross-section it is believed that a special type of nitriding layerformed after low-temperature nitriding. The mechanical performance test results indicate that the wear resistance and hardness of the alloy increased significantly.  相似文献   

14.
对Cu、TiB2混合粉末进行了高能球磨实验和相应的粒度分析以及粉末形貌观察,研究了高能球磨对Cu基复合材料的力学性能、电学性能和显微组织的影响。结果表明,高能球磨使粉末细化,在球磨初期,粉末粒度下降很快,当粉末粒度下降到一定值,细化难以继续进行,得到TiB2颗粒细小弥散分布的复合粉末;TiB2的加入,使铜基体的硬度、强度得到显著提高,电导率下降;相比常规粉末冶金方法,高能球磨方法制备的TiB2/Cu复合材料的硬度、强度大大提高,而电导率较低。  相似文献   

15.
以炭纤维针刺整体毡为预制体,用化学气相渗透(CVI)、浸渍/炭化(I/C)的方法制备密度和基体炭不同的C/C多孔坯体,采用真空熔渗将铜合金液渗入C/C坯体中制备C/C-Cu复合材料,研究试验条件对复合材料摩擦磨损性能影响。研究结果表明:随着时间的延长,C/C-Cu复合材料摩擦因数趋于稳定;随着载荷的增加,摩擦因数和体积磨损先增后减,当载荷为80 N时达到最大值;试样摩擦因数和体积磨损与对偶件有关,当采用硬度较高的40Cr钢为对偶件时,试样摩擦因数随着时间的延长而增加并趋于稳定,且磨损量最大;当采用硬度低的黄铜和紫铜为对偶件时,试样摩擦因数随着时间变化不大,与紫铜对偶时的磨损量最小;C/C-Cu复合材料的磨损机制主要为磨料磨损、粘着磨损,采用40Cr钢作对偶时氧化磨损加大。  相似文献   

16.
为研究某HMX基PBX炸药对不同材料金属壳体的驱动加速能力,参照25mm标准圆筒试验,研究了该炸药对无氧铜Cu、钛合金TC4和高强度钢G50三种壳体材料的做功能力,获得了圆筒壁的膨胀过程及最大膨胀速度,并与理论计算值和数值模拟结果进行了对比。研究表明:该炸药爆轰驱动不同壳体材料的膨胀破裂时间和破裂半径存在差异,且对低密度钛合金壳体材料的驱动能力最强;圆筒试验件破片初速理论计算值、数值模拟结果与试验值吻合较好,相对误差均在10%以内;相比标准圆筒试验只考虑炸药对单一金属铜管的驱动加速能力,研究结果可为该炸药与武器弹药壳体材料的匹配设计提供参考。  相似文献   

17.
为了研究钛钢复合板在弯曲过程中的断裂行为,利用扫描电镜原位观察了爆炸和爆炸--轧制两种工艺生产的钛钢复合板在弯曲过程中裂纹的萌生和扩展.结果表明:外弯过程裂纹萌生的角度小于内弯过程,钛钢复合板内弯比外弯具有更强的抗裂纹产生能力.在爆炸钛钢复合板的弯曲过程中,裂纹主要在波头的界面结合处和漩涡中心处萌生;在爆炸--轧制钛钢复合板的弯曲过程中,裂纹在Ti--Fe金属间化合物硬块界面处萌生.产生裂纹的主要原因爆炸钛钢复合板的波头界面结合处和漩涡中心处、爆炸--轧制钛钢复合板的界面块状Ti--Fe金属间化合物具有较高的硬度,在变形的过程中难以协调变形.  相似文献   

18.
TiNi系形状记忆合金两体磨粒磨损机制研究   总被引:10,自引:0,他引:10  
研究了硬度较低的NiTi系形状记忆合金的两体磨粒磨损行为,其耐磨性明显高于硬度较高的38CrMoAl(氮化)合金,认为形状记忆合金(SMA)的超弹性,弹性模量非线性,高强度及良好的耐疲劳性等因素的综合作用构成了SMA的“自适应”磨损机制,这种“自适应”机制是NiTi系形状记忆合金具有极好耐磨性的根本原因。  相似文献   

19.
Metal/intermetallic laminate composites can improve the mechanical properties of intermetallic materials using metal layers. In recent years, titanium aluminide intermetallics have received increasing attention due to their excellent performance properties, such as high melting point, high specific strength and stiffness, and good corrosion resistance. However, the low fracture toughness of Al_3Ti alloys at room temperature has greatly limited their application, and fiber or particle reinforcement has not shown a significant toughening effect. Research into the reinforcing effects of the interface and near-interface zone on the fracture behavior of Al_3Ti is lacking. Ti/Al_3Ti metal/intermetallic laminate composite was synthesized from titanium and aluminum foils using vacuum hot-pressed sintering technology. The microstructure of the prepared material was analyzed by scanning electron microscope and electron backscattered diffraction. Results illustrate that both Ti and Al_3Ti were single-phase and there was a noticeable stress concentration on the interface. To obtain indentation and cracks, loads were applied to different locations of the composite by a microhardness tester. The growth path of the cracks was then observed under microscope, showing that crack propagation was prevented by the interface between the Ti and Al_3Ti layers, and the cracks that propagated parallel to the laminate shifted to the interface. Fracture toughness of the different areas, including Al_3Ti layers, interface, and near-interface zone, were measured by the indentation fracture method. The fracture toughness at and near the interface was 1.7 and 2 times that of the Al_3Ti layers, respectively. Results indicate that crack blunting and crack front convolution by the laminate structure was primarily responsible for increased toughness.  相似文献   

20.
采用第一原理赝势平面波方法计算了NiAl超胞合金化的几何与力学性质结构,应用几个力学参数表征和评判了合金化元素对NiAl金属间化合物延/脆性及其硬度的影响.结果发现:Cr,Mn,Fe,Co和Cu合金化均可提高NiAl金属间化合物的硬度,其增加次序为:Mn>Co>Fe>Cr>Cu,但合金化元素含量过高(6.25at%),却使NiAl金属间化合物的延展性降低,其降低次序与硬度增加的次序相反.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号