首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
提出了一种基于Parzen窗函数的SAR图像人造目标检测算法.该方法首先以基于数据驱动的Parzen窗核函数逼近实际SAR图像的直方图,完成SAR图像的精确建模;在此基础上,理论推导了全局CFAR检测算法的阈值,设计了阈值求解的数值算法.典型目标的实际图像的实验结果证明,该方法是一种速度较快、精度较高的人造目标检测算法.  相似文献   

2.
针对遥感图像中的小目标存在信息少、易受背景干扰、特征表达较弱等缺陷,导致目前通用目标检测算法在对这类小目标进行检测时效果不理想的问题,为提高对遥感图像中小目标的检测能力,提出一种基于RFBNet的改进算法.该算法以RFBNet为框架,首先利用自校正卷积取代特征提取网络中的常规卷积,以扩展感受野丰富输出,进而强化对弱特征...  相似文献   

3.
针对遥感图像的复杂背景干扰大、目标尺度变化大以及小目标检测困难等导致检测精度降低的问题,提出一种增强YOLOX主干网络输出特征提取能力的检测算法。通过加入连续膨胀残差卷积和注意力机制,设计一种全新的提取主干网络输出特征增强块(feature enhance block,FEB),让连续膨胀残差卷积串联4个具有不同膨胀率的膨胀残差卷积,扩大算法的感受野,丰富上下文信息,同时减轻背景对检测的影响,有效加强算法对目标尺度变化大及小目标的检测能力,使用SA注意力机制抑制背景对算法检测的干扰,提高算法的检测精度。在RSOD数据集上的实验表明,FEB相较于其他同类型模块具有更好的特征提取能力。  相似文献   

4.
针对现有目标检测算法在遥感图像中检测精度低,容易漏检等问题,提出了一种遥感图像旋转目标检测算法,使用YOLOv5m作为基本框架。首先,使用环形平滑标签CSL(Circular Smooth Label,CSL)将角度回归预测转变为角度分类预测,解决回归预测中的角度周期性和边界可交换性的问题,提升检测精度。其次,使用密集编码标签(Densely Coded Label,DCL)替换稀疏编码标签,大幅减少预测层厚度,提升训练速度。实验表明,使用改进后的算法较基准算法mAP提升4.88%,模型训练速度与原模型速度基本相同,证明了算法的有效性。  相似文献   

5.
基于目标匹配的遥感图像变化检测方法   总被引:1,自引:0,他引:1  
针对传统的像素级遥感图像变化检测方法中检测精度严重依赖于图像配准、辐射校正和差异图像阈值选取的问题,提出了一种基于目标匹配的目标级遥感图像变化检测方法。该方法直接作用于2幅未经配准和辐射校正的不同时相遥感图像,利用目标的区域不变矩与目标之间的角度关系对目标进行匹配,将不能匹配的目标作为变化目标,利用匹配目标对2幅图进行配准,以同时实现图像的配准与变化检测,并用配准结果对变化检测结果进行修正。实验结果表明,该方法具有较好的定性检测性能。  相似文献   

6.
目标检测是遥感图像处理领域的一项重要技术,遥感图像目标种类繁多且存在目标物体难以被检测.提出把YOLOv5算法应用到遥感图像目标检测的方法,首先选择YOLOv5x来构建网络模型,再通过Mosaic数据增强对样本集进行预处理和自适应锚框筛选方法确定锚框大小,然后切片卷积操作得到原始特征图,将原始特征图送入主干网络进行特征融合得到最优权重,最后采用GIOU Loss做边界框的损失函数和非极大值抑制目标框的筛选,对遥感图像进行目标检测.在公开的10类地理空间物体(NWPU-VHR 10)数据集进行了检测实验,以评估所提出模型的目标检测性能.对比实验表明,本文的模型mAP达到了0.9239,与使用相同数据集的模型中的最佳结果进行比较,mAP提升了1.78%,该方法可以提高遥感图像目标检测精度.  相似文献   

7.
针对近似河流无法准确检测出来的问题,提出了一种基于多特征融合的遥感图像河流目标检测算法.首先根据提取样本图像的局部熵、纹理和角点信息特征构建了有效区分河流区域和背景区域的特征向量,利用支持向量机进行训练获得决策函数,通过决策函数判断测试图像的河流区域,完成河流区域的粗检测;然后结合粗检测的结果,应用测地线活动轮廓模型提取完整准确的河流区域.实验结果证明该算法对河流目标定位准确,获得的河流检测结果具有良好的连通性,可以准确地检测复杂背景下的河流区域.  相似文献   

8.
基于嵌套窗口的高光谱图像目标检测   总被引:1,自引:0,他引:1  
针对经典RX检测算法所存在的窗口分析方式的不足,提出一种基于嵌套窗口分析的高光谱图像小目标检测算法,并将这种嵌套方式应用到线性RX、非线性核特征向量空间分解(KEST)算法之中,对不同窗口方式的检测算法以及非线性判别分析检测算法进行了详尽的对比分析.实验表明,在3层嵌套窗口下的文中算法能够获得更好的目标检测效果.  相似文献   

9.
提出了一种改进的盒维数算法。基于这种盒维数定义,对高通滤波后的图像逐点计算,所得的盒维数为该点的分形特征。根据这种算法,背景中多种不同纹理的特征值非常接近,而所在位置的特征值高于背景所在位置的值。并提出一种迭代的分割-聚类法检测各目标。  相似文献   

10.
一种基于分形测度的图像纹理边缘检测方法   总被引:2,自引:0,他引:2  
  相似文献   

11.
论述了一种图像目标检测算法。利用区域PCA对图像进行变化,用低维子空间描述高维空间中的图像。将低维子空间中的向量加载到BP网络的输入端进行训练,调整神经网络权值。然后利用建立起来的BP网络对图像中的目标进行检测;并且在此过程中,建立多种训练的目标库和背景库。最后编写了一个实现整个系统的软件,将图像输入软件,根据神经网络检测,输出端即可得到识别结果。  相似文献   

12.
 基于光学遥感图像提取船只目标是海洋信息感知中的重要应用方向,主要任务包括在广域大视场图像中快速检测定位船只目标,并在检测船只目标的基础上对目标信息进行进一步的提取与分类,该研究无论在民用及军事方面都具有重要意义。本文围绕船只检测识别方法中预处理及目标检测、分类等主要环节,阐述了各环节面临的难点问题及主要解决方法,指出了目前存在的问题,展望了基于光学遥感图像技术的发展趋势。  相似文献   

13.
以舰船为研究对象,研究高分辨遥感图像的多尺度多目标检测中的关键技术,主要解决多尺度多目标识别和细粒度分类准确率低等问题.在目标定位方面,利用特征金字塔深度网络定位多目标区域,创建一个在所有尺度上均具有语义信息的特征金字塔,有效解决多尺度多目标数据定位准确率低这一关键问题;在目标识别方面,利用共享CNN网络重建输入图像、优化多任务损失函数提取细粒度分类目标结构特征,提高细分目标识别准确率.与GoogLeNet、Faster R-CNN和Yolo三种目标检测算法对比实验表明,利用特征金字塔和重建输入图像可有效检测多目标多尺度的细粒度船舶对象,漏检率为1.5%,细粒度分类识别平均准确率为92.67%.  相似文献   

14.
对于舰船遥感目标检测中存在精度低、速度慢等问题,以YOLOV3为框架对YOLOV3网络进行改进,从而使其更适用于检测遥感舰船目标,为了使检测精度更高,在原本3个不同尺度的卷积特征图与深度残差网络中相应尺度的特征图进行融合前提下,增加了第4个尺度104×104,有效地学习样本的特征.实验结果表明:改进的YOLOV3网络能...  相似文献   

15.
赵群 《应用科技》2015,(1):19-21,27
针对摄像机在静止条件下的自适应运动目标检测,提出一种改进的运动目标检测算法。首先,针对高斯混合背景建模初期背景建模效果不理想的问题,利用统计的方法得到背景模型,根据背景图像建立高斯混合模型;在模型学习方面,为均值与方差设置了不同的学习率。针对传统的LBP算子的缺陷,提出了一种改进的纹理特征算子,将其与HSV颜色空间去阴影的方法相结合,从而实现对阴影的检测与去除,利用随机Hough算子对圆的检测原理,在运动目标检测的基础之上,实现对人头的边缘检测。实验结果表明:该算法可以很好地检测出运动目标,并能够有效去除运动目标包含的阴影区域,从而实现人头区域的检测。  相似文献   

16.
遥感图像中的目标多呈现出方向上的任意性,导致遥感图像中感兴趣目标的检测难度大大增加.现有主流目标检测方法都是基于水平候选锚框的,现有方法通过对锚框添加旋转角度来解决任意方向目标检测问题,但这使得候选锚框的数量激增,导致算法计算开销过大.提出了一种基于GA-RoI Transformer(Guided Anchoring...  相似文献   

17.
基于分维特征的目标分割与检测   总被引:2,自引:0,他引:2  
提出了一种改进的盒维数算法 .基于这种盒维数定义 ,对高通滤波后的图像逐点计算 ,所得的盒维数为该点的分形特征 .根据这种算法 ,背景中多种不同纹理的特征值非常接近 ,而目标所在位置的特征值高于背景所在位置的值 .并提出一种迭代的分割 聚类法检测各目标 .  相似文献   

18.
为了提高遥感目标检测的稳健性和准确性,基于低层特征检测器,增加了1个改进型卷积神经网络(CNN)框架。首先,利用支持向量回归(SVR)对遥感目标进行初步分类,将检测出的目标信息作为CNN框架的输入。然后,对CNN框架进行优化,通过模块扩展的方式纳入更深的模块。为了使得分类器对亮度变化具有更好的稳健性,在特征向量分类之前增加正则化层(RL)。同时,为了提升目标检测的准确性,增加1个欧拉变换层(ETL),作为类别间的分离度量。使用来自CIFAR-10和MNIST数据集中的图像,与定向梯度边缘直方图(E-HOG)方法、基于生成式对抗网络(GAN)的检测方法、基于二值与浮点数混用方法的语义分割网络(MBU-Net)相比较,仿真结果表明:该文方法的精度和F1得分更高,且标准偏差也更低;该文方法的运行时间接近于一般CNN方法;利用该文方法在测试集的卫星图像中进行目标建筑物检测,模块化CNN可以与基于特征的算法实现互补。  相似文献   

19.
基于深度学习的方法,运用单次多框检测器(SSD)目标检测框架和自注意力机制,针对施工人员佩戴安全帽数据集进行神经网络训练.通过调整原始SSD目标检测框架中的参数,并向SSD目标检测框架中添加自注意力模块来计算特征图中像素点之间相互影响,以提高算法对目标检测的关注度,扩大卷积神经网络的感受野,从而提高目标检测的准确率.实验结果表明:改进算法在应对小目标检测以及目标之间的遮挡方面有很好的适应性,同时与其他检测算法相比,检测成功率有明显提高.  相似文献   

20.
纹理模型驱动的基于背景分析的小目标检测   总被引:9,自引:0,他引:9  
为有效地实现复杂背景下小目标的检测,利用背景分析的思想,提出了纹理模型驱动的基于背景分析的小目标检测方法,可提高对小目标的检测精度且具有较强抗噪能力,实验结果证明了该方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号