首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 341 毫秒
1.
为了解方钢管混凝土柱-工字钢梁竖向加劲肋式节点的抗震性能,对两个方钢管混凝土柱-工字钢梁竖向加劲肋式节点试件进行了拟静力加载试验,研究了节点在反复循环荷载作用下的滞回性能、耗能能力、延性、应力分布和传力机制.试验结果表明,节点具有足够的承载力以及较好的延性和耗能能力,竖向加劲肋式节点的梁端弯矩大部分通过竖向加劲肋传递给柱钢管腹板和核心混凝土,另一部分梁端弯矩由梁端翼缘直接传递给柱钢管翼缘和核心混凝土.节点破坏模式为靠近竖向加劲肋端部的梁翼缘出现严重的局部屈曲,梁翼缘变截面最窄处形成塑性铰,而柱钢管、竖向加劲肋、梁端部均在弹性范围内工作,很好地实现了强柱弱梁、强节点弱构件的抗震原则.  相似文献   

2.
为研究新型复式钢管混凝土柱-钢梁连接节点的力学性能,采用模型试验与有限元分析相结合的方法得到了钢梁翼缘受拉模型,通过分析竖向肋板和锚固腹板的传力机理,得到了竖向肋板与锚固腹板连接构造参数对节点受力性能的影响,提出了该新型节点设计改进建议,根据钢梁翼缘受拉模型推导出梁端极限承载力计算公式,并将计算结果与反复荷载试验得到的承载力进行了比较。研究结果表明:翼缘传来的拉力主要依靠竖向肋板和锚固腹板进行传递,可忽略钢管和核心混凝土的贡献;该新型节点能可靠地传递梁端弯矩、轴力和剪力,符合节点更强、整体性好的设计原则;理论计算与模型试验所得结构承载力的误差在2.16%~4.14%的范围内,证明了该模型适用性,但计算值偏保守;研究成果可为该新型节点今后的工程应用提供依据。  相似文献   

3.
钢管混凝土树状节点是由钢管混凝土Y形柱与双十字形梁柱节点组合而成的复杂节点.采用ANSYS对该类节点进行非线性有限元计算分析.计算模型考虑材料,几何和接触非线性.粱端荷栽位移曲线以及滞回曲线与试验吻合较好,并能准确模拟出节点的破坏形态.分析有限元计算结果表明:梁端加劲肋使拉压应力能有效传递到内隔板,中间孔洞的存在对内隔板的传力影响较小,反复荷载作用下节点核心区混凝土对角区受压,对梁端压应力的传递有较大贡献.  相似文献   

4.
目的通过研究找出两类内置CFRP圆管方钢管高强混凝土柱-钢梁节点在单调荷载作用下的传力机制和破坏模态.方法设计了一栋采用内置CFRP圆管的方钢管混凝土柱的5层框架结构,利用有限元软件ABAQUS建立了三维有限元模型,对两类节点进行了单调荷载作用下的模拟分析.结果外加强环式节点的梁端弯矩主要通过柱角附近的水平环板和柱两侧外伸环板传递给柱壁和核心混凝土,水平环板有效宽度大约为0.5倍的柱宽度.外肋环板式节点的极限位移均大于外加强环式节点,尤其是外肋宽度大于40 mm时更为明显.外肋环板式节点的极限承载力也高于外加强环式节点.结论设计节点的破坏主要原因是环板和钢梁翼缘交接位置出现局部屈曲,节点的极限承载力取决于梁的抗弯承载力,变截面位置作为整个节点危险部位,在设计中应进行计算和校核.  相似文献   

5.
基于高层L形钢管混凝土组合异形柱(L-CFST柱)住宅结构体系,对两侧连接形式不同的中节点试件进行抗震性能研究.首先,对2个轴压比不同的足尺节点试件进行往复加载试验,对试件的破坏形态、滞回曲线、骨架曲线、延性系数、耗能能力及应变分布等进行对比分析.结果表明:试验的破坏主要发生在扩翼缘式端板连接处端板的鼓曲和拉裂,钢梁翼缘连接板圆弧过渡处的局部屈曲及开裂等,外肋环板式连接只出现了竖向肋板端部处钢梁翼缘连接板的轻微开裂.扩翼缘式端板连接与外肋环板式连接的刚度接近,但承载力相差较大.通过建立三维非线性有限元模型,并与试验结果进行对比分析,验证了有限元模型的准确性,并对影响扩翼缘式端板连接承载力的4种因素进行了参数化分析.  相似文献   

6.
提出了翼缘开圆孔和翼缘、腹板均开孔的方钢管混凝土柱-钢梁削弱梁端新型节点形式.建立考虑几何非线性和材料非线性的有限元模型对此新型节点形式在单调及低周反复荷载作用下的受力性能进行数值分析,并和实验及传统的狗骨式节点(RBS)在荷载-位移曲线、节点削弱端应力分布、承载力、延性及耗能能力等方面进行对比.结果表明:此类削弱方式与狗骨式节点的刚度和承载力均基本相同;塑性铰均能外移至削弱区域;削弱节点表现出良好的廷性和耗能能力,具有较好的抗震性能.  相似文献   

7.
钢管混凝土加强环式节点的试验研究   总被引:6,自引:1,他引:5  
钢管混凝土柱由于其优越的力学性能而在工程中得到了广泛的应用,但是其节点的研究显得还不够完整和充分。本文中研究了2个钢管混凝土加强环式梁柱节点的力学行为,分析了梁、钢管壁和加强环的应变分布规律。试件均采用钢梁,并采用构造不同的环间加劲肋。试验结果表明,钢管混凝土加强环式节点力学性能良好,节点刚度大;环间加劲肋的构造对节点的受力性能影响不大;加劲肋可以看作加强环梁的弹性支座,可有效地降低环梁的跨度。  相似文献   

8.
目的研究带屈曲约束支撑的方钢管高强混凝土柱-H型钢梁削弱节点的受力性能,找出翼缘削弱方式和削弱程度等因素对其受力性能的影响.方法通过ABAQUS有限元分析软件,对18个传统型节点和削弱型节点模型进行单调荷载作用下的拟静力分析,对比分析在不同轴压比、混凝土强度、梁柱线刚度比和BRB屈服承载力的影响下,传统型节点和削弱型节点的破坏机理.结果梁端翼缘的削弱不会降低屈曲约束支撑的屈服承载力和极限承载力,不会降低节点的承载能力.建议节点的削弱参数按照a=(0.3~0.7)×b_f,b=(0.75~0.85)×h_b,c=(0.2~0.25)×b_f进行取值.结论削弱型节点的梁端塑性铰出现在削弱部位,梁端翼缘的削弱起到塑性铰外移的作用,减小了节点区域应力集中,有利于实现"强柱弱梁、强节点"的抗震设计目标.  相似文献   

9.
针对方钢管混凝土柱-钢梁单边螺栓连接节点,采用ABAQUS有限元软件进行工作机理及参数分析.研究结果表明:该类新型节点具有良好的转动能力和延性;节点抗弯承载力随着轴压比的增大而降低;柱长细比对该类节点弯矩-转角曲线影响较小;增大钢管强度、混凝土强度、柱截面含钢率可有效提高节点力学性能.对于平齐式端板连接,减小外侧螺栓至钢梁翼缘距离及增大连接螺栓数量可提高节点抗弯承载力.  相似文献   

10.
通过对4个隔板贯穿式方钢管混凝土柱-钢梁连接节点试件的静力性能试验研究,揭示此类节点的受力机理和破坏形态,探讨梁端翼缘两侧的侧板、钢管柱的宽厚比以及隔板的外伸长度等因素对节点承载力和传力机理的影响.试验结果表明,该类节点具有受力明确,传力途径清晰的特点;宽厚比的改变对节点承载力的影响不大,但对于节点板剪应变的影响较大;梁端翼缘两侧增加侧板可以减缓隔板与梁相交的角隅处应力集中现象,使塑性铰出现梁上,远离脆弱的梁端焊接区,提高了节点的延性.  相似文献   

11.
纯净钢及纯净铸坯的生产技术   总被引:1,自引:0,他引:1  
阐述了纯净钢的技术含义、纯净度标准及钢材性能对纯净度的要求 ,提出了生产纯净铸坯的技术思路。  相似文献   

12.
制备两种不同形式和不同钢材料的焊接接头疲劳试验件,进行等幅疲劳试验,通过试验寿命数据的统计分析,得到了存活率分别为50%、99%、99.9%、99.99%的p-S-N曲线,为寿命评估提供必要的数据基础。  相似文献   

13.
钢/Al2O3陶瓷/钢轻型复合装甲板抗弹性能   总被引:1,自引:0,他引:1  
为优化设计钢/Al2O3陶瓷/钢轻型复合装甲板,结合薄板冲塞的极限速度方程与Florence模型建立了钢/Al2O3陶瓷/钢轻型复合装甲板的抗弹极限速度预测模型. 根据模型,分析了不同面板、背板及陶瓷厚度组合对钢/Al2O3陶瓷/钢轻型复合装甲板抗弹极限速度的影响,并通过7.62mm普通钢芯弹侵彻钢/Al2O3陶瓷/钢复合装甲板试样实验验证了该模型的正确性. 结果表明,钢面板厚度小于1.0mm时,复合板抗弹极限速度计算值和实验值之间的相对误差在15%以下,陶瓷芯与钢背板的厚度比保持在1.5~4.5之间比较合理.  相似文献   

14.
利用等效弹性模量随机场来表征铸造缺陷的随机性,对含铸钢节点的钢管桁架结构进行概率有限元模拟,计算了结构整体性能对铸钢材料及钢梁钢管材料分散性的敏感度.然后,基于随机场局部平均理论,利用随机场网格描述铸钢节点缺陷概率分布随空间位置变化的特点,计算了结构整体性能指标对随机场离散后各随机变量的敏感度.最后,对随机场网格进行二次划分,得到能反映随机因素空间重要度的随机场网格,并大大减少了结构随机有限元计算的计算量.结果表明:含铸钢节点的钢结构的结构性能对铸钢材料弹性模量随机性的敏感度约为型钢钢管材料的3倍,铸钢材料的随机性是影响结构性能的重要因素;铸钢节点主管下侧受拉部位的材料对结构的刚度和稳定性影响较大,主管与支管相贯线部位的材料对结构强度影响较大,在跨尺度随机有限元分析中,相关区域在随机场网格细化和缺陷模型建立时应重点考虑.  相似文献   

15.
内水压下钢衬钢纤维混凝土压力管道截面应力计算   总被引:1,自引:0,他引:1  
钢纤维混凝土是控制钢衬钢筋混凝土裂缝的一个有效途径,但钢纤维加入到混凝土中使结构计算变得复杂,现有的钢衬钢筋混凝土压力管道的计算方法不再适用,因此根据结构的受力特点以及钢纤维混凝土的特性提出了钢衬钢混凝土压力管道的计算方法,该方法是受力全过程分析;并着重进行了混凝土裂后的非线性计算。  相似文献   

16.
T型钢连接空间钢框架的动力性能研究   总被引:1,自引:1,他引:0  
半刚性连接由于全部采用螺栓连接,不需要现场施焊,具有较好的抗震性能。国内对半刚性连接钢框架的试验研究主要集中在双腹板顶底角钢连接钢框架的性能研究方面,而对其他类型的半刚性连接钢框架的试验研究几乎没有。为了对半刚性连接钢框架的受力性能有更深层次的了解,对T型钢连接空间钢框架进行拟动力试验,在国内尚属首例。通过T型钢连接空间钢框架的节点区应变、位移和荷载反馈的变化情况,分析不同等级地震作用下T型钢连接空间钢框架的动力反应并进行对比。试验表明:随地震作用的增大,半刚性连接空间钢框架的动力响应增大、变形能力良好、具有很好的耗能性能,从而表明T型钢连接钢框架具有较好的动力性能。  相似文献   

17.
Steel reinforced TiC composites are an attractive choice for wear resistance and corrosion resistance applications. TiC-reinforced 17-4PH maraging stainless matrix composites were processed by conventional powder metallurgy (P/M). TiC-reinforced maraging stainless steel composites with >97% of theoretical density were fabricated. The microstructure, mechanical and wear properties of the composites were evaluated. The microstructure of these composites consisted of spherical and semi-spherical TiC particles.A few microcracks appeared in the composites, showing the presence of tensile stress in the composites produced during sintering.Typical properties, namely, hardness and bend strength were reported for the sintered composites. After heat treatment and aging, the increase of hardness was observed. The increase of hardness was attributed to the aging reaction in the 17-4PH stainless steel. The precipitates appeared in the microstructure and were responsible for the increase in hardness. The specific wear behavior of the composites was strongly dependent on the content of TiC particles, the interparticle spacing, and the presence of hard precipitates in the binder phase.  相似文献   

18.
将25Cr5MoA钢/微合金钢/Q235钢板复合板坯加热到轧制温度950~1100℃,经保温后轧制1道次,压下量为50%~65%,制成25Cr5MoA钢/微合金钢/Q235钢热轧复合板试样.利用剪切实验方法测定了复合板材的界面结合强度,通过光学显微镜观察结合界面的组织.结果表明:当轧制温度为1000~1100℃时,25Cr5MoA钢/微合金钢/Q235钢能有效复合;压下量对25Cr5MoA钢/Q235钢复合板界面结合强度有一定的影响,当压下量达到一定程度后,随着压下量的增加,复合板的结合强度逐渐降低;轧制温度对25Cr5MoA钢/微合金钢/Q235钢复合板界面结合强度影响很大,在道次压下量一定的情况下,随着轧制温度的升高,复合板的结合强度逐渐升高.在1100℃的轧制温度和50%压下量的轧制条件下结合强度达到最大值.  相似文献   

19.
钢混凝土组合柱-钢梁结构中柱节点受力性能研究   总被引:5,自引:0,他引:5  
在钢混凝土组合柱 (SRC)柱—钢梁中柱节点进行低周反复加载试验的基础上 ,同时用ANSYS三维有限元非线性分析软件进行计算机模拟 .分析了SRC柱—钢梁中柱节点的滞回特性 ;探讨考虑混凝土、型钢腹板、箍筋共同贡献的SRC柱—钢梁节点极限抗剪承载力计算公式 .  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号