首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
2.
Mouse chromosome 10 harbors several loci associated with hearing loss, including waltzer (v), modifier-of deaf waddler (mdfw) and Age-related hearing loss (Ahl). The human region that is orthologous to the mouse 'waltzer' region is located at 10q21-q22 and contains the human deafness loci DFNB12 and USH1D). Numerous mutations at the waltzer locus have been documented causing erratic circling and hearing loss. Here we report the identification of a new gene mutated in v. The 10.5-kb Cdh23 cDNA encodes a very large, single-pass transmembrane protein, that we have called otocadherin. It has an extracellular domain that contains 27 repeats; these show significant homology to the cadherin ectodomain. In v(6J), a GT transversion creates a premature stop codon. In v(Alb), a CT exchange generates an ectopic donor splice site, effecting deletion of 119 nucleotides of exonic sequence. In v(2J), a GA transition abolishes the donor splice site, leading to aberrant splice forms. All three alleles are predicted to cause loss of function. We demonstrate Cdh23 expression in the neurosensory epithelium and show that during early hair-cell differentiation, stereocilia organization is disrupted in v(2J) homozygotes. Our data indicate that otocadherin is a critical component of hair bundle formation. Mutations in human CDH23 cause Usher syndrome type 1D and thus, establish waltzer as the mouse model for USH1D.  相似文献   

3.
4.
Auditory neuropathy is a particular type of hearing impairment in which neural transmission of the auditory signal is impaired, while cochlear outer hair cells remain functional. Here we report on DFNB59, a newly identified gene on chromosome 2q31.1-q31.3 mutated in four families segregating autosomal recessive auditory neuropathy. DFNB59 encodes pejvakin, a 352-residue protein. Pejvakin is a paralog of DFNA5, a protein of unknown function also involved in deafness. By immunohistofluorescence, pejvakin is detected in the cell bodies of neurons of the afferent auditory pathway. Furthermore, Dfnb59 knock-in mice, homozygous for the R183W variant identified in one DFNB59 family, show abnormal auditory brainstem responses indicative of neuronal dysfunction along the auditory pathway. Unlike previously described sensorineural deafness genes, all of which underlie cochlear cell pathologies, DFNB59 is the first human gene implicated in nonsyndromic deafness due to a neuronal defect.  相似文献   

5.
Cayman ataxia is a recessive congenital ataxia restricted to one area of Grand Cayman Island. Comparative mapping suggested that the locus on 19p13.3 associated with Cayman ataxia might be homologous to the locus on mouse chromosome 10 associated with the recessive ataxic mouse mutant jittery. Screening genes in the region of overlap identified mutations in a novel predicted gene in three mouse jittery alleles, including the first mouse mutation caused by an Alu-related (B1 element) insertion. We found two mutations exclusively in all individuals with Cayman ataxia. The gene ATCAY or Atcay encodes a neuron-restricted protein called caytaxin. Caytaxin contains a CRAL-TRIO motif common to proteins that bind small lipophilic molecules. Mutations in another protein containing a CRAL-TRIO domain, alpha-tocopherol transfer protein (TTPA), cause a vitamin E-responsive ataxia. Three-dimensional protein structural modeling predicts that the caytaxin ligand is more polar than vitamin E. Identification of the caytaxin ligand may help develop a therapy for Cayman ataxia.  相似文献   

6.
Genes associated with human microcephaly, a condition characterized by a small brain, include critical regulators of proliferation, cell fate and DNA repair. We describe a syndrome of congenital microcephaly and diverse defects in cerebral cortical architecture. Genome-wide linkage analysis in two families identified a 7.5-Mb locus on chromosome 19q13.12 containing 148 genes. Targeted high throughput sequence analysis of linked genes in each family yielded > 4,000 DNA variants and implicated a single gene, WDR62, as harboring potentially deleterious changes. We subsequently identified additional WDR62 mutations in four other families. Magnetic resonance imaging and postmortem brain analysis supports important roles for WDR62 in the proliferation and migration of neuronal precursors. WDR62 is a WD40 repeat-containing protein expressed in neuronal precursors as well as in postmitotic neurons in the developing brain and localizes to the spindle poles of dividing cells. The diverse phenotypes of WDR62 suggest it has central roles in many aspects of cerebral cortical development.  相似文献   

7.
Nephronophthisis (NPHP) is the most frequent genetic cause of chronic renal failure in children. Identification of four genes mutated in NPHP subtypes 1-4 (refs. 4-9) has linked the pathogenesis of NPHP to ciliary functions. Ten percent of affected individuals have retinitis pigmentosa, constituting the renal-retinal Senior-Loken syndrome (SLSN). Here we identify, by positional cloning, mutations in an evolutionarily conserved gene, IQCB1 (also called NPHP5), as the most frequent cause of SLSN. IQCB1 encodes an IQ-domain protein, nephrocystin-5. All individuals with IQCB1 mutations have retinitis pigmentosa. Hence, we examined the interaction of nephrocystin-5 with RPGR (retinitis pigmentosa GTPase regulator), which is expressed in photoreceptor cilia and associated with 10-20% of retinitis pigmentosa. We show that nephrocystin-5, RPGR and calmodulin can be coimmunoprecipitated from retinal extracts, and that these proteins localize to connecting cilia of photoreceptors and to primary cilia of renal epithelial cells. Our studies emphasize the central role of ciliary dysfunction in the pathogenesis of SLSN.  相似文献   

8.
9.
Endoplasmic reticulum (ER) chaperones and ER stress have been implicated in the pathogenesis of neurodegenerative disorders, such as Alzheimer and Parkinson diseases, but their contribution to neuron death remains uncertain. In this study, we establish a direct in vivo link between ER dysfunction and neurodegeneration. Mice homozygous with respect to the woozy (wz) mutation develop adult-onset ataxia with cerebellar Purkinje cell loss. Affected cells have intracellular protein accumulations reminiscent of protein inclusions in both the ER and the nucleus. In addition, upregulation of the unfolded protein response, suggestive of ER stress, occurs in mutant Purkinje cells. We report that the wz mutation disrupts the gene Sil1 that encodes an adenine nucleotide exchange factor of BiP, a crucial ER chaperone. These findings provide evidence that perturbation of ER chaperone function in terminally differentiated neurons leads to protein accumulation, ER stress and subsequent neurodegeneration.  相似文献   

10.
11.
12.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号