首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In the mammalian retina, light signals generated in photoreceptors are passed to bipolar and horizontal cells via synaptic contacts. In various pathological conditions, these second-order neurons extend neurites into the outer nuclear layer (ONL). However, the molecular events associated with this neurite outgrowth are not known. Here, we characterized the morphological synaptic changes in the CNGA3/CNGB1 double-knockout (A3B1) mouse, a model of retinitis pigmentosa. In these mice, horizontal cells looked normal until postnatal day (p) 11, but started growing neurites into the ONL 1 day later. At p28, the number of sprouting processes decreased, but the remaining sprouts developed synapse-like contacts at rod cell bodies, with an ultrastructural appearance reminiscent of ribbon synapses. Hence, neurite outgrowth and ectopic synaptogenesis in the A3B1 retina were precisely timed events starting at p12 and p28, respectively. We therefore performed microarray analysis of retinal gene expression in A3B1 and wild-type mice at those ages to evaluate the genomic response underlying these two events. This analysis identified 163 differentially regulated genes in the A3B1 retina related to neurite outgrowth or plasticity of synapses. The global changes in gene expression in the A3B1 retina were consistent with activation of signaling pathways related to Tp53, Smad, and Stat3. Moreover, key molecules of these signaling pathways could be localized at or in close proximity to outgrowing neurites. We therefore propose that Tp53, Smad, and Stat3 signaling pathways contribute to the synaptic plasticity in the A3B1 retina.  相似文献   

2.
In order to point out spatio-temporal filtering of nervous structures after previous studies of their spatial behaviour, we have built a new model of cell according to synaptic and membrane plasticity (it agrees with properties of integration, memory and synaptic fatigue). This model, intended to be produced in many units, is made with integrated circuits in "thick film" technology.  相似文献   

3.
Long-term potentiation (LTP) and long-term depression (LTD) are two electrophysiological models that have been studied extensively in recent years as they may represent basic mechanisms in many neuronal networks to store certain types of information. In several brain regions, it has been shown that these two forms of synaptic plasticity require sufficient dendritic depolarization, with the amplitude of the calcium signal being crucial for the generation of either LTP or LTD. The rise in calcium concentration mediated by the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors has been proposed to stimulate various calcium-dependent enzymatic processes that could convert the induction signal into long-lasting changes in synaptic structure; protein kinases and phosphatases have so far been considered predominantly with regard to LTP and LTD formation. According to several lines of experimental evidence, changes in synaptic function observed with LTP and LTD are thought to be the result of modifications of postsynaptic currents mediated by the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) subtype of glutamate receptors. Moreover, it has become apparent recently that activation of the calcium-dependent enzyme phospholipase A2 (PLA2) could be part of the molecular mechanisms involved in alterations of AMPA receptor properties during long-term changes in synaptic operation. In the present review, we will first describe the results that indicate a critical role of the phospholipases in regulating synaptic function. Next, sections will be devoted to the effects of PLA2 and phospholipids on the binding properties of glutamate receptors, and a revised biochemical model will be presented as an attempt to integrate the PLA2 enzyme into the mechanisms ( in particular kinases and phosphatases) that participate in adaptive neural plasticity. Finally, we will review data relevant to the issue of selective changes in AMPA binding after environmental enrichment and LTP.  相似文献   

4.
Genetic and molecular analysis of the synaptotagmin family   总被引:5,自引:0,他引:5  
Secretion is a fundamental cellular process used by all eukaryotes to insert proteins into the plasma membrane and transport signaling molecules and intravesicular proteins into the extracellular space. Secretion requires the fusion of two phospholipid bilayers within the cell, an energetically unfavorable process. A conserved repertoire of vesicle-trafficking proteins has evolved that function to overcome this energy barrier and temporally and spatially control membrane fusion within the cell. Within neurons, opening of synaptic calcium channels and subsequent calcium entry triggers synchronous synaptic vesicle exocytosis and neurotransmitter release into the synaptic cleft. After fusion, synaptic vesicles undergo endocytosis, are refilled with neurotransmitter, and return to the vesicle pool for further rounds of cycling. It is within this local synaptic trafficking pathway that the synaptotagmin family of calcium-binding synaptic vesicle proteins has been postulated to function. Here we review the current literature on the function of the synaptotagmin family and discuss the implications for synaptic transmission and membrane trafficking. Received 14 August 2000; received after revision 20 September 2000, accepted 14 October 2000  相似文献   

5.
Summary The lobster stomatogastric ganglion contains the central pattern generators (CPGs) for the pyloric and gastric mill rhythms. All of the neurons and their synaptic connections have been identified for each rhythm and serve as the basis for understanding the mechanisms by which chemical neuromodulators are able to alter the functional state of each CPG. Using examples of different amines and peptides, I show how these substances can be found within specific neurons and how their application to the CPG can alter the motor patterns in specific ways. I also discuss what changes in cellular and synaptic properties occur as a result of bath application and particularly in the case of proctolin, how these changes may have behavioral correlates. The various outputs appear to be the result of a functional rewiring of anatomically defined neural circuits and this may be a widespread mechanism for the production of closely-linked but behaviorally distinct movement patterns.  相似文献   

6.
Intracellular trafficking of AMPA receptors in synaptic plasticity   总被引:6,自引:0,他引:6  
Modification of ligand-gated receptor function at the postsynaptic domain is one of the most important mechanisms by which the efficacy of synaptic transmission in the nervous system is regulated. Traditionally, these types of modifications have been thought to be achieved mainly by altering the channel-gating properties or conductance of the receptors. However, recent evidence suggests that AMPA (α-amino-3-hydroxyl-5-methyl-4-isoxayolepropionic acid)-type ligand-gated glutamate receptors are continuously recycling between the plasma membrane and the intracellular compartments via vesicle-mediated plasma membrane insertion and clathrin-dependent endocytosis. Regulation of either receptor insertion or endocytosis results in a rapid change in the number of these receptors expressed on the plasma membrane surface and in the receptor-mediated responses, thereby playing an important role in mediating certain forms of synaptic plasticity. Thus, controlling the number of postsynaptic receptors by regulating the intracellular trafficking and plasma membrane expression of the postsynaptic receptors may be a common and important mechanism of synaptic plasticity in the mammalian central nervous system.  相似文献   

7.
8.
During development, axonal projections have a remarkable ability to innervate correct dendritic subcompartments of their target neurons and to form regular neuronal circuits. Altered axonal targeting with formation of synapses on inappropriate neurons may result in neurodevelopmental sequelae, leading to psychiatric disorders. Here we show that altering the expression level of the polysialic acid moiety, which is a developmentally regulated, posttranslational modification of the neural cell adhesion molecule NCAM, critically affects correct circuit formation. Using a chemically modified sialic acid precursor (N-propyl-D: -mannosamine), we inhibited the polysialyltransferase ST8SiaII, the principal enzyme involved in polysialylation during development, at selected developmental time-points. This treatment altered NCAM polysialylation while NCAM expression was not affected. Altered polysialylation resulted in an aberrant mossy fiber projection that formed glutamatergic terminals on pyramidal neurons of the CA1 region in organotypic slice cultures and in vivo. Electrophysiological recordings revealed that the ectopic terminals on CA1 pyramids were functional and displayed characteristics of mossy fiber synapses. Moreover, ultrastructural examination indicated a "mossy fiber synapse"-like morphology. We thus conclude that homeostatic regulation of the amount of synthesized polysialic acid at specific developmental stages is essential for correct synaptic targeting and circuit formation during hippocampal development.  相似文献   

9.
忆阻器是具有记忆和类突触特性的非线性电路元件.基于此特性,文中提出了一个基于STDP(spike-time-dependent plasticity)学习规则的忆阻桥突触电路,它具有可以作为人工神经网络突触的优势.根据此优势,将这个新的电路与其他电路和网络结合,构成全新的电路和网络.首先将该忆阻桥突触电路和3个附加的晶体管结合在一起,实现神经网络的突触运算,并构建完整的忆阻桥突触神经网络.然后再将它与细胞神经网络结合用于图像去噪、边缘提取、角检测和汉字识别.最后,通过一系列的仿真实验证实了该方案的可行性,说明基于STDP学习规则的忆阻桥突触神经网络更具仿生特性,而且集成度更高、模板更易更换,有望解决实时的复杂的智能问题.  相似文献   

10.
While the availability of pluripotent stem cells has opened new prospects for generating neural donor cells for nervous system repair, their capability to integrate with adult brain tissue in a structurally relevant way is still largely unresolved. We addressed the potential of human embryonic stem cell-derived long-term self-renewing neuroepithelial stem cells (lt-NES cells) to establish axonal projections after transplantation into the adult rodent brain. Transgenic and species-specific markers were used to trace the innervation pattern established by transplants in the hippocampus and motor cortex. In vitro, lt-NES cells formed a complex axonal network within several weeks after the initiation of differentiation and expressed a composition of surface receptors known to be instrumental in axonal growth and pathfinding. In vivo, these donor cells adopted projection patterns closely mimicking endogenous projections in two different regions of the adult rodent brain. Hippocampal grafts placed in the dentate gyrus projected to both the ipsilateral and contralateral pyramidal cell layers, while axons of donor neurons placed in the motor cortex extended via the external and internal capsule into the cervical spinal cord and via the corpus callosum into the contralateral cortex. Interestingly, acquisition of these region-specific projection profiles was not correlated with the adoption of a regional phenotype. Upon reaching their destination, human axons established ultrastructural correlates of synaptic connections with host neurons. Together, these data indicate that neurons derived from human pluripotent stem cells are endowed with a remarkable potential to establish orthotopic long-range projections in the adult mammalian brain.  相似文献   

11.
The nervous system is populated by diverse types of neurons, each of which has dendritic trees with strikingly different morphologies. These neuron-specific morphologies determine how dendritic trees integrate thousands of synaptic inputs to generate different firing properties. To ensure proper neuronal function and connectivity, it is necessary that dendrite patterns are precisely controlled and coordinated with synaptic activity. Here, we summarize the molecular and cellular mechanisms that regulate the formation of cell type-specific dendrite patterns during development. We focus on different aspects of vertebrate dendrite patterning that are particularly important in determining the neuronal function; such as the shape, branching, orientation and size of the arbors as well as the development of dendritic spine protrusions that receive excitatory inputs and compartmentalize postsynaptic responses. Additionally, we briefly comment on the implications of aberrant dendritic morphology for nervous system disease.  相似文献   

12.
Summary This work is an ultrastructural and cytochemical study of a structure observed in the nucleolus of Allium cepa meristematic cells after nucleolar disgregation, by a continuous treatment of 12 h with ethidium bromide. The ultrastructural and cytochemical data allow us to consider this structure as the intranucleolar chromatin collapsed by the effect of the drug.  相似文献   

13.
The synapsins: beyond the regulation of neurotransmitter release   总被引:12,自引:0,他引:12  
The synapsins are a family of five closely related neuron-specific phosphoproteins associated with the membranes of synaptic vesicles. The synapsins have been implicated in the regulation of neurotransmitter release. They tether synaptic vesicles to actin filaments in a phosphorylation-dependent manner, controlling the number of vesicles available for release at the nerve terminus. A growing body of evidence suggests that the synapsins play a broad role during neuronal development. They participate in the formation and maintenance of synaptic contacts among central neurons. In addition, each synapsin has a specific role during the elongation of undifferentiated processes and their posterior differentiation into axons and dendrites. In this review, we focus on these novel roles of synapsins during the early stages of development. Received 26 September 2001; received after revision 8 November 2001; accepted 9 November 2001  相似文献   

14.
15.
Summary Locust ocellar retinal cells are innervated by giant second order cells, 2 mm long, which show discrete zones of integration along their course, including a major zone in the axonal length of the neuron. The complex synaptic arrangements which exist between higher-order afferent and efferent cells and these second order cells along their course suggests that transmission takes place by the electrotonic spread of slow potentials. The size and accessibility of these visual interneurons offers a unique preparation for examining mechanisms of graded synaptic transmission.  相似文献   

16.
Summary Immunocytochemical procedures at ultrastructural and light microscopy level revealed, in the Chacma baboon endocrine pancreas, cells which were immunoreactive for glucagon and pancreatic polypeptide (PP). Some D cells were observed to contain secretory granules with both the appearance and immunoreactivity of A cell secretory granules.  相似文献   

17.
Immunocytochemical procedures at ultrastructural and light microscopy level revealed, in the Chacma baboon endocrine pancreas, cells which were immunoreactive for glucagon and pancreatic polypeptide (PP). Some D cells were observed to contain secretory granules with both the appearance and immunoreactivity of A cell secretory granules.  相似文献   

18.
Information processing along the course of a visual interneuron.   总被引:1,自引:0,他引:1  
Locust ocellar retinal cells are innervated by giant second order cells, 2 mm long, which show discrete zones of integration along their course, including a major zone in the axonal length of the neuron. The complex synaptic arrangements which exist between higher-order afferent and efferent cells and these second order cells along their course suggests that transmission takes place by the electrotonic spread of slow potentials. The size and accessibility of these visual interneurons offers a unique preparation for examining mechanisms of graded synaptic transmission.  相似文献   

19.
Signaling in the Chemosensory Systems   总被引:4,自引:0,他引:4  
Taste bud cells communicate with sensory afferent fibers and may also exchange information with adjacent cells. Indeed, communication between taste cells via conventional and/or novel synaptic interactions may occur prior to signal output to primary afferent fibers. This review discusses synaptic processing in taste buds and summarizes results showing that it is now possible to measure real-time release of synaptic transmitters during taste stimulation using cellular biosensors. There is strong evidence that serotonin and ATP play a role in cell-to-cell signaling and sensory output in the gustatory end organs.  相似文献   

20.
G Azzali 《Experientia》1988,44(5):441-444
The kidney lymphatic system of bat, dormouse and marmot consists of intraparenchymal (interlobar, arcuate, interlobular) and extraparenchymal (capsular) vessels sharing common ultrastructural aspects. We did not observe medullary lymphatics. The qualitative and quantitative seasonal changes in the ultrastructure of the lymphatic endothelium represent not only a species-linked feature but also (and mainly) an evident seasonal fluctuation in lymph formation. Furthermore, these ultrastructural changes emphasize the important role played by the different mechanisms involved in the translymphatic movement of proteins and interstitial fluid with particular regard to the 'vesicular route' and intraendothelial channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号