首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 502 毫秒
1.
Evolution of a polymeric globin in the brine shrimp Artemia   总被引:2,自引:0,他引:2  
A M Manning  C N Trotman  W P Tate 《Nature》1990,348(6302):653-656
  相似文献   

2.
H C Chang  T Moriuchi  J Silver 《Nature》1983,305(5937):813-815
The HLA-D region of the major histocompatibility complex (MHC) of man encodes polymorphic glycoproteins found predominantly on the cell surfaces of B cells and macrophages. These proteins mediate interactions, required for the induction of immune responses, among cells of the immune system and consequently are referred to as Ia (immune-response associated). Two families of Ia molecules, DR and DS (also known as DC), have been defined, the former analogous to the I-E (ref. 1) and the latter to the I-A molecules of the murine MHC. Both DR and DS molecules consist of two noncovalently associated polypeptide chains with molecular weights of 33,000 and 28,000, designated alpha and beta, respectively. The polymorphism of DR molecules is due to structural variation in the small subunit, DR beta, with the large subunit, DR alpha, being constant in structure. In contrast, both subunits DS alpha and DS beta are structurally variable when DS allotypes are compared. We have now isolated a cDNA clone from a DR7 cell line that contains the entire coding sequence for the DS alpha subunit and have compared its predicted amino acid sequence with that previously deduced from a DS alpha cDNA clone isolated from a DR4,w6 cell line. This comparison reveals that 10 of 11 amino acid differences are located within the alpha 1 (N-terminal) domain and that the alpha 2 or immunoglobulin-like domains are identical.  相似文献   

3.
P Primakoff  W Lathrop  L Woolman  A Cowan  D Myles 《Nature》1988,335(6190):543-546
Immunization of male and female animals with extracts of whole sperm cells is known to cause infertility. Also, men and women who spontaneously produce antisperm antibodies are infertile but otherwise healthy. Although the critical sperm antigens are unknown, these observations have led to the proposal that sperm proteins might be useful in the development of a contraceptive vaccine. The guinea pig sperm surface protein PH-20 is essential in sperm adhesion to the extracellular coat (zona pellucida) of the egg, a necessary initial step in fertilization. Here, we report that 100% effective contraception was obtained in male and female guinea pigs immunized with PH-20. Antisera from immunized females had high titres, specifically recognized PH-20 in sperm extracts, and blocked sperm adhesion to the egg zona pellucida in vitro. The contraceptive effect was long-lasting and reversible: immunized females, mated at intervals of six to fifteen months after immunization, progressively regained fertility.  相似文献   

4.
Membrane-enveloped vesicles travel among the compartments of the cytoplasm of eukaryotic cells, delivering their specific cargo to programmed locations by membrane fusion. The pairing of vesicle v-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) with target membrane t-SNAREs has a central role in intracellular membrane fusion. We have tested all of the potential v-SNAREs encoded in the yeast genome for their capacity to trigger fusion by partnering with t-SNAREs that mark the Golgi, the vacuole and the plasma membrane. Here we find that, to a marked degree, the pattern of membrane flow in the cell is encoded and recapitulated by its isolated SNARE proteins, as predicted by the SNARE hypothesis.  相似文献   

5.
X M Yu  Z W Hall 《Nature》1991,352(6330):64-67
Ligand-gated ion channels, a major class of cell-surface proteins, have a pseudosymmetric structure with five highly homologous subunits arranged around a central ion pore. The correct assembly of each channel, whose subunit composition varies with cell type and stage of development, requires specific recognition between the subunits. Assembly of the pentameric form of the acetylcholine receptor from adult muscle (AChR; alpha 2 beta epsilon delta) proceeds by a stepwise pathway starting with the formation of the heterodimers, alpha epsilon and alpha delta. The heterodimers than associate with the beta subunit and with each other to form the complete receptor. We have now determined which parts of the subunits mediate the interactions during assembly of the adult form of the receptor from mouse muscle by using a chimaeric subunit in which the N-terminal and C-terminal extracellular domains are derived from the epsilon subunit with the remainder from the beta subunit. The epsilon and beta subunits were chosen because the epsilon subunit forms a heterodimer with the alpha subunit in the pathway for assembly of the receptor, whereas the beta subunit does not. The epsilon beta chimera can substitute for the epsilon but not the beta subunit in the oligomeric receptor, indicating that the alpha subunit specifically recognizes an extracellular domain of the epsilon subunit.  相似文献   

6.
A monoclonal antibody (mAb), MSH27 has been selected from an mAb library which has been prepared with separated mouse sperm heads as antigens. Three aspects of evidence indicated that the MSH27 antigen was involved in the process of sperm-egg membrane fusion. After the acrosome reaction, the antigen was located at sperm equatorial segment and in postacrosomal area, where, it was widely accepted, the sperm-egg membrane fusion initially occurred. In in vitro fertilization, the MSH27 antibody could decrease the index of sperm-egg membrane fusion, but made no effects on sperm approaching and binding to the plasma membrane of eggs. The inhibition showed an antibody concentration-dependent manner, with a rate decrease of 90% at 600 μg/mL immuno-globulin lgM. Furthermore, the antigen was able to affect the sperm-egg membrane fusion directly. The fusion index was obviously reduced after the zona-free eggs were exposed to the antigen purified by immuno-affinity chromatography. These, all together, demonstrated that the MSH27 antigen played an important role in sperm-egg membrane fusion.  相似文献   

7.
C M Woods  E Lazarides 《Nature》1986,321(6065):85-89
Erythroid differentiation entails the biogenesis of a membrane skeleton, a network of proteins underlying and interacting with the plasma membrane, whose major constituent is the heterodimeric protein spectrin, composed of two structurally similar but distinct subunits, alpha (relative molecular mass (Mr) 240,000) and beta (Mr 220,000), which interact side-on with each other to form a long rod-like molecule. Interaction of this network with the membrane is mediated by the binding of the beta subunit to ankyrin, which in turn binds to the cytoplasmic domain of the transmembrane anion transporter (also referred to as band 3). Purified alpha and beta subunits of spectrin from the membrane of mature red blood cells will spontaneously heterodimerize, suggesting that assembly of the spectrin-actin skeleton is a simple self-assembly process, but in vivo studies with developing chicken embryo erythroid cells have indicated that assembly in vivo is more complex. We now present evidence that newly synthesized spectrin subunits in vivo or in vitro rapidly adopt one of two competing conformations, a heterodimer or a homo-oligomer. These competing reactions seem to determine the overall extent of spectrin assembled during erythroid development by determining which conformation will assemble onto the membrane-skeleton (the heterodimer) and which conformations are targeted for degradation (the homo-oligomers).  相似文献   

8.
Studies of intracellular traffic in yeast and mammalian systems have implicated members of the Rab family of small GTP-binding proteins as regulators of membrane fusion. We have used the patch clamp technique to measure exocytotic fusion events directly and investigate the role of GTP-binding proteins in regulating exocytosis in mast cells. Intracellular perfusion of mast cells with GTP-gamma S is sufficient to trigger complete exocytotic degranulation in the absence of other intracellular messengers. Here we show that GTP is a potent inhibitor of GTP-gamma S-induced degranulation, indicating that sustained activation of a GTP-binding protein is sufficient for membrane fusion. We have found that synthetic oligopeptides, corresponding to part of the effector domain of Rab3a, stimulate complete exocytotic degranulation, similar to that induced by GTP-gamma S. The response is selective for Rab3a sequence and is strictly dependent on Mg2+ and ATP. This suggests that sustained activation of a Rab3 protein causes exocytotic fusion. The peptide response can be accelerated by GDP-beta S, suggesting that Rab3a peptides compete with endogenous Rab3 proteins for a binding site on a target effector protein, which causes fusion on activation.  相似文献   

9.
The recent cloning of the complementary DNAs and/or genes for several receptors linked to guanine nucleotide regulatory proteins including the adrenergic receptors (alpha 1, alpha 2A, alpha 2B, beta 1, beta 2), several subtypes of the muscarinic cholinergic receptors, and the visual 'receptor' rhodopsin has revealed considerable similarity in the primary structure of these proteins. In addition, all of these proteins contain seven putative transmembrane alpha-helices. We have previously described a genomic clone, G-21, isolated by cross-hybridization at reduced stringency with a full length beta 2-adrenergic receptor probe. This clone contains an intronless gene which, because of its striking sequence resemblance to the adrenergic receptors, is presumed to encode a G-protein-coupled receptor. Previous attempts to identify this putative receptor by expression studies have failed. We now report that the protein product of the genomic clone, G21, transiently expressed in monkey kidney cells has all the typical ligand-binding characteristics of the 5-hydroxytryptamine (5-HT1A) receptor.  相似文献   

10.
Fusion of biological membranes is mediated by specific lipid-interacting proteins that induce the formation and expansion of an initial fusion pore. Here we report the crystal structure of the ectodomain of the Semliki Forest virus fusion glycoprotein E1 in its low-pH-induced trimeric form. E1 adopts a folded-back conformation that, in the final post-fusion form of the full-length protein, would bring the fusion peptide loop and the transmembrane anchor to the same end of a stable protein rod. The observed conformation of the fusion peptide loop is compatible with interactions only with the outer leaflet of the lipid bilayer. Crystal contacts between fusion peptide loops of adjacent E1 trimers, together with electron microscopy observations, suggest that in an early step of membrane fusion, an intermediate assembly of five trimers creates two opposing nipple-like deformations in the viral and target membranes, leading to formation of the fusion pore.  相似文献   

11.
Agonist-bound receptors activate heterotrimeric (alpha beta gamma) G proteins by catalysing replacement by GTP of GDP bound to the alpha subunit, resulting in dissociation of alpha-GTP from the beta gamma subunits. In most cases, alpha-GTP carries the signal to effectors, as in hormonal stimulation and inhibition of adenylyl cyclase by alpha s and alpha i respectively. By contrast, genetic evidence in yeast and studies in mammalian cells suggest that beta gamma subunits of G proteins may also regulate effector pathways. Indeed, of the four recombinant mammalian adenylyl cyclases available for study, two, adenylyl cyclases II and IV, are stimulated by beta gamma. This effect of beta gamma requires costimulation by alpha s-GTP. This conditional pattern of effector responsiveness led to the prediction that receptors coupled to many G proteins will mediate elevation of cellular cyclic AMP, provided that Gs is also active. We now confirm this prediction. Coexpression of mutationally active alpha s with adenylyl cyclase II converted agonists that act through 'inhibitory' receptors (coupled to Gi) into stimulators of cAMP synthesis. Experiments using pertussis toxin and a putative scavenger of beta gamma, the alpha subunit of transducin, suggest that beta gamma subunits of the Gi proteins mediated this stimulation. These findings assign a new signalling function to beta gamma subunits of Gi proteins, the conditional stimulation of cAMP synthesis by adenylyl cyclase II.  相似文献   

12.
Modis Y  Ogata S  Clements D  Harrison SC 《Nature》2004,427(6972):313-319
Dengue virus enters a host cell when the viral envelope glycoprotein, E, binds to a receptor and responds by conformational rearrangement to the reduced pH of an endosome. The conformational change induces fusion of viral and host-cell membranes. A three-dimensional structure of the soluble E ectodomain (sE) in its trimeric, postfusion state reveals striking differences from the dimeric, prefusion form. The elongated trimer bears three 'fusion loops' at one end, to insert into the host-cell membrane. Their structure allows us to model directly how these fusion loops interact with a lipid bilayer. The protein folds back on itself, directing its carboxy terminus towards the fusion loops. We propose a fusion mechanism driven by essentially irreversible conformational changes in E and facilitated by fusion-loop insertion into the outer bilayer leaflet. Specific features of the folded-back structure suggest strategies for inhibiting flavivirus entry.  相似文献   

13.
Mutant alpha subunits of Gi2 inhibit cyclic AMP accumulation   总被引:16,自引:0,他引:16  
One or more of three Gi proteins, Gi1-3, mediates hormonal inhibition of adenylyl cyclase. Whether this inhibition is mediated by the alpha or by the beta gamma subunits of Gi proteins is unclear. Mutations inhibiting the intrinsic GTPase activity of another G protein, the stimulatory regulator of adenylyl cyclase (Gs), constitutively activate it by replacing either of two conserved amino acids in its alpha subunit (alpha s). These mutations create the gsp oncogene which is found in human pituitary and thyroid tumours. In a second group of human endocrine tumours, somatic mutations in the alpha subunit of Gi2 replace a residue cognate to one of those affected by gsp mutations. This implies that the mutations convert the alpha i2 gene into a dominantly acting oncogene, called gip2, and that the mutant alpha i2 subunits are constitutively active. We have therefore assessed cyclic AMP accumulation in cultured cells which stably or transiently express exogenous wild-type alpha i2 complementary DNA or either of two mutant alpha i2 cDNAs. The results show that putatively oncogenic mutations in alpha i2 constitutively activate the protein's ability to inhibit cAMP accumulation.  相似文献   

14.
Reese C  Heise F  Mayer A 《Nature》2005,436(7049):410-414
The question concerning whether all membranes fuse according to the same mechanism has yet to be answered satisfactorily. During fusion of model membranes or viruses, membranes dock, the outer membrane leaflets mix (termed hemifusion), and finally the fusion pore opens and the contents mix. Viral fusion proteins consist of a membrane-disturbing 'fusion peptide' and a helical bundle that pin the membranes together. Although SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complexes form helical bundles with similar topology, it is unknown whether SNARE-dependent fusion events on intracellular membranes proceed through a hemifusion state. Here we identify the first hemifusion state for SNARE-dependent fusion of native membranes, and place it into a sequence of molecular events: formation of helical bundles by SNAREs precedes hemifusion; further progression to pore opening requires additional peptides. Thus, SNARE-dependent fusion may proceed along the same pathway as viral fusion: both use a docking mechanism via helical bundles and additional peptides to destabilize the membrane and efficiently induce lipid mixing. Our results suggest that a common lipidic intermediate may underlie all fusion reactions of lipid bilayers.  相似文献   

15.
Topological restriction of SNARE-dependent membrane fusion   总被引:16,自引:0,他引:16  
Parlati F  McNew JA  Fukuda R  Miller R  Söllner TH  Rothman JE 《Nature》2000,407(6801):194-198
To fuse transport vesicles with target membranes, proteins of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) complex must be located on both the vesicle (v-SNARE) and the target membrane (t-SNARE). In yeast, four integral membrane proteins, Sed5, Bos1, Sec22 and Bet1 (refs 2-6), each probably contribute a single helix to form the SNARE complex that is needed for transport from endoplasmic reticulum to Golgi. This generates a four-helix bundle, which ultimately mediates the actual fusion event. Here we explore how the anchoring arrangement of the four helices affects their ability to mediate fusion. We reconstituted two populations of phospholipid bilayer vesicles, with the individual SNARE proteins distributed in all possible combinations between them. Of the eight non-redundant permutations of four subunits distributed over two vesicle populations, only one results in membrane fusion. Fusion only occurs when the v-SNARE Bet1 is on one membrane and the syntaxin heavy chain Sed5 and its two light chains, Bos1 and Sec22, are on the other membrane where they form a functional t-SNARE. Thus, each SNARE protein is topologically restricted by design to function either as a v-SNARE or as part of a t-SNARE complex.  相似文献   

16.
New antiviral strategy using capsid-nuclease fusion proteins.   总被引:26,自引:0,他引:26  
G Natsoulis  J D Boeke 《Nature》1991,352(6336):632-635
Overexpression of dominant-negative mutants of various viral proteins can result in 'intracellular immunization'. Here we describe a new approach to interfering with viral replication in which a nuclease is fused to a capsid component so that the nuclease is encapsidated inside the virion where it can inactivate viral nucleic acid. We used Ty1, a yeast retrotransposon whose transposition closely parallels retroviral replication mechanisms and serves as an easily manipulated model for the retroviral infection process. We constructed fusion genes consisting of the region encoding the N-terminal portion of the TYA/TYB open reading frames of retrotransposon Ty1 and either of two different nuclease genes. Ty1-nuclease fusion proteins are targeted to Ty1 virus-like particles, and are active in degrading nucleic acids. A Ty1-barnase fusion protein causes 98-99% reduction in the efficiency of Ty1 transposition in vivo, presumably by degrading encapsidated Ty1 RNA. This strategy, referred to as capsid-targeted viral inactivation, may be useful for interfering with the replication of retroviruses and other viruses.  相似文献   

17.
V Ramakrishnan  S W White 《Nature》1992,358(6389):768-771
Understanding the process whereby the ribosome translates the genetic code into protein molecules will ultimately require high-resolution structural information, and we report here the first crystal structure of a protein from the small ribosomal subunit. This protein, S5, has a molecular mass of 17,500 and is highly conserved in all lifeforms. The molecule contains two distinct alpha/beta domains that have structural similarities to several other proteins that are components of ribonucleoprotein complexes. Mutations in S5 result in several phenotypes which suggest that S5 may have a role in translational fidelity and translocation. These include ribosome ambiguity or ram, reversion from streptomycin dependence and resistance to spectinomycin. Also, a cold-sensitive, spectinomycin-resistant mutant of S5 has been identified which is defective in initiation. Here we show that these mutations map to two distinct regions of the molecule which seem to be sites of interaction with ribosomal RNA. A structure/function analysis of the molecule reveals discrepancies with current models of the 30S subunit.  相似文献   

18.
Membrane fusion is a key step in enveloped virus entry. Highly conserved heptad repeat regions (HR1 and HR2) of Newcastle disease virus (NDV) fusion protein (F) are critical functional domains for viral membrane fusion. They display different conformations in the membrane fusion states and are viewed as candidate targets for neutralizing antibody responses. We previously reported that an analog of heptad repeat peptides HR2-HR1-HR2(HR212) and HR2 could inhibit NDV induced cell-cell membrane fusion. Here, we show that HR212 can induce the production of highly potent antibody in immunized rabbits, which could recognize full length peptides of both HR1 and HR2, and inhibit NDV hemagglutination and NDV entry. These suggest that either HR212 or its antibody could be an inhibitor of virus-induced cell-cell membrane fusion.  相似文献   

19.
Membrane fusion is a key step in enveloped virus entry. Highly conserved heptad repeat regions (HR1 and HR2) of Newcastle disease virus (NDV) fusion protein (F) are critical functional domains for viral membrane fusion. They display different conformations in the membrane fusion states and are viewed as candidate targets for neutralizing antibody responses. We previously reported that an analog of heptad repeat peptides HR2-HR1-HR2(HR212) and HR2 could inhibit NDV induced cell-cell membrane fusion. Here, we show that HR212 can induce the production of highly potent antibody in immunized rabbits, which could recognize full length peptides of both HR1 and HR2, and inhibit NDV hemagglutination and NDV entry. These suggest that either HR212 or its antibody could be an inhibitor of virus-induced cell-cell membrane fusion.  相似文献   

20.
Structural homology of Torpedo californica acetylcholine receptor subunits   总被引:58,自引:0,他引:58  
The nicotinic acetylcholine receptor (AChR) from the electroplax of the ray Torpedo californica is composed of five subunits present in a molar stoichiometry of alpha 2 beta gamma delta (refs 1-3) and contains both the binding site for the neurotransmitter and the cation gating unit (reviewed in refs 4-6). We have recently elucidated the complete primary structures of the alpha-, beta- and delta-subunit precursors of the T. californica AChR by cloning and sequencing cDNAs for these polypeptides. Here, we report the whole primary structure of the gamma-subunit precursor of the AChR deduced from the nucleotide sequence of the cloned cDNA. Comparison of the amino acid sequences of the four subunits reveals marked homology among them. The close resemblance among the hydrophilicity profiles and predicted secondary structures of all the subunits suggests that these polypeptides are oriented in a pseudosymmetric fashion across the membrane. Each subunit contains four putative transmembrane segments that may be involved in the ionic channel. The transmembrane topology of the subunit molecules has also been inferred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号