首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 312 毫秒
1.
介绍了影响石材抛光的几个因素:抛光剂的类型,抛光剂(膏),抛光磨具(块)和抛光工艺参数,重点通过实验的方法得出石才抛光光泽度与压力P的关系;光泽度与时间的关系;光泽度与进给速度Vw的关系。为石材的机械加工提供了实验依据。  相似文献   

2.
为提高和调控模具自由曲面的加工效率与质量,提出了机器人辅助连续进动气囊抛光方法;运用运动学原理,推导了行切法加工方式下的切向速度数学模型;基于Preston方程,建立了连续进动气囊抛光材料去除模型;通过MATLAB仿真技术,分析了其它工艺参数一定的条件下,进给速度和叠加次数对气囊抛光切削方向分布和材料去除特性的影响;以材料快速均匀去除为目标,获得了优化进给速度v=0.7mm/s和叠加次数n=3.最后,通过机器人辅助气囊抛光系统,进行了试验对比验证,与仿真结果吻合,证实了连续进动气囊抛光方法应用于模具自由曲面抛光的有效性.  相似文献   

3.
抛光是大理石加工中极重要的一道工序,它直接影响加工后的表面光泽度。本文针对一种难以抛光的石材——硅质板的抛光问题进行了理论分析和试验研究,提出了一种能量显著提高硅质板表面光泽度的抛光工艺方法。  相似文献   

4.
通过大理石中主要造岩矿物的岩组分析认为,岩石内部结构中矿物排列方向的定向性对大理石石材光泽度以及抗压强度均会产生一定的影响。而且岩石中矿物成份与结构构造对其起着一定的控制作用。通过对几种不同类型大理石中方解石矿物晶体进行的显微构造分析,确定出晶体的优选方位,并经过实验,获得一定的肯定性结论,初步论证了利用大理石中矿物优选方位来选择石料切片方位以获取具有高光泽度和较大抗压强度优质大理石石材的可行性。  相似文献   

5.
针对目前缺少不同相态CO_2对页岩微观结构及力学参数影响规律研究的现状,通过室内岩石-压裂液浸泡测试系统,对不同相态CO_2浸泡后岩石矿物组分、微观结构及力学参数进行了测试。研究结果表明:液态、超临界态CO_2相比较滑溜水对矿物颗粒微观结构的影响更为明显,矿物颗粒之间的孔隙增大4%~15%,易导致页岩宏观力学性质受到劣化影响;不同介质浸泡后页岩力学参数劣化受影响程度排序为:抗拉强度泊松比峰值强度弹性模量,滑溜水浸泡后页岩脆性特征变化不明显,而液态、超临界态CO_2浸泡后页岩脆性增强40%~50%。液态CO_2有利于改善岩石微观孔隙和降低岩石抗拉强度,超临界态CO_2有利于提高微孔隙/裂隙穿透性,提高岩石脆性和降低破裂压力。研究结果为页岩气CO_2干法压裂工艺优化提供了一定的实验支撑和理论依据。  相似文献   

6.
为了提升软质印章石的加工质量,在不同型号砂纸和溶胶-凝胶(SG)抛光膜上磨抛巴林石、高山石、芙蓉石3种印章石,探讨研磨盘和载物盘的转动方向、转速,加工压力,加工时间等工艺参数及工艺路线,并确定每道工序的最大光泽度值,以及印章石表面形貌和粗糙度之间的关系.结果表明:最终优化工艺的研磨盘、载物盘分别以300,120 r·min-1同向转动,加工压力为15 MPa;最佳工艺路线是通过在400#砂纸半精磨、在2 000#砂纸的精磨和在SG抛光膜上抛光,使印章石表面光泽度达到50以上,粗糙度在100 nm左右,表面形貌在放大100倍时无明显划痕.  相似文献   

7.
非常规油气、干热岩、超深井等领域的钻完井工程对岩石力学服务的及时性与准确性提出了迫切需求,基于矿物及干酪根等岩石骨架组成成分具有固定的岩石物理及岩石力学特性,通过低成本、低风险、高实时性、高采样率的岩石成分录井技术开展岩石力学参数求取方法研究,以偶极子阵列声波计算岩石力学参数的模型作正演,确定通过矿物计算岩石力学参数的可行性,然后以组成矿物的元素成分直接构建岩石力学参数,并对两种方法进行对比。653个复杂岩性数据点,正演法计算的杨氏弹性模量、泊松比的平均相对误差分别为16.3%、9.8%;直接法计算的杨氏弹性模量、泊松比的平均相对误差分别为10.0%、6.8%。结果表明,通过元素直接构建的岩石力学参数具有更高的精度,在岩性相对简单的地区应用效果更好。  相似文献   

8.
针对气囊数控抛光获得高精密非球曲面零件的方法,分析了气囊抛光实验样机的结构、运动控制系统组成、柔性气囊的构成以及气囊进动运动方式和气囊抛光的加工原理.研究了气囊抛光工艺扩展可行性以及抛光过程中控制工件面形、表面质量和处理边缘效应的方法.研究表明气囊抛光工艺具有可扩展性.在试制的实验样机上进行了工艺参数综合实验,实验结果表明:利用气囊抛光方法可以加工出超精密光滑的表面,该方法是加工和制造超精密光学表面的有效方法.  相似文献   

9.
研究3种不同晶粒度的花岗石抛光表面的光泽度特性,分析花岗石抛光表面的光泽度与金刚石磨盘磨粒大小、花岗石晶粒度的关系,提出花岗石抛光表面光泽度具有方向性的概念.结果表明,花岗石抛光表面的光泽度随着金刚石磨盘磨粒的减小而增加,而且增加规律非常一致;花岗石抛光表面不同测量方向上存在光泽度差异,而随着花岗石的抛光表面光泽度的提高,不同方向的差异性在减小;随着光泽度逐渐提高,离散度也随着增加,但当光泽度提高到一定程度时,标准差和极差又会减小或趋于稳定.  相似文献   

10.
对于深部岩石力学和地下工程而言,准确表征与评价岩石的非均质性,对于研究岩石在深部复杂环境下物理力学性质的变异性至关重要。由于岩石成分的复杂性和矿物分布的随机性,采用传统的图像观察方法难以准确的表述岩石的非均质性,因此,亟需寻找一种科学、实用的试验方法对岩石的非均质性进行表征评价。本文假设同种岩石具有相同的矿物几何特征及边界特征(即岩石的微观基质相同),岩石在破坏过程中强相矿物破坏的声发射信号相比于弱相矿物破坏的声发射信号较多。岩石巴西劈裂过程中轴线上的破裂可以近似的认为岩石内部强弱相矿物的依次破裂,通过统计不同应力阶段岩石的声发射信号特征可以间接的分析岩石内部强弱相矿物的差异性。基于此,通过定义岩石强弱相矿物占比及矿物空间分布的均匀性表征出了岩石的非均质性。之后选取不同特征变辉长岩和花岗岩验证了分析方法的科学性和实用性。最后,本文在岩石非均质性评价的基础上探究了岩石宏观力学参数与岩石非均质特征的相关性。单轴和三轴试验表明,岩石的峰值强度和弹性模量不仅仅与岩石强弱相矿物占比有关,也与岩石矿物空间分布的均匀性相关。  相似文献   

11.
通过跟踪不同加工阶段的花岗石表面光泽度、微观形貌以及组分变化特征 ,研究垂直轴磨削过程中金刚石磨盘与花岗石界面的作用机制 .用光泽度仪、环境扫描电镜 (ESEM)和 X射线多晶衍射仪 (XRD) ,分别研究加工过程中花岗石表面光泽度、微观形貌和组分的变化 ;并用三明治薄膜热电偶 ,监测了磨盘与花岗石接触界面的温度变化 .结果表明 ,加工过程中磨盘与花岗石接触界面的温度 ,不足以引起花岗石表面的组分变化 .花岗石表面光泽度的高低 ,与加工过程中在花岗石表面形成的塑性流变程度密切相关  相似文献   

12.
针对模具微结构光整加工,利用电流变效应对磨料的聚集作用和超声振动对磨料的驱动作用,提出了超声电流变复合抛光工艺.开发了超声电流变复合抛光加工系统.正交试验结果表明超声振动的振幅和施加的电场强度对表面粗糙度的影响最大.通过单因素试验研究了超声电流变复合抛光工艺参数对抛光后表面粗糙度的影响规律.试验结果验证了超声电流变复合抛光工艺可行性,为后续工艺优化和实际应用奠定了基础.  相似文献   

13.
模具曲面机器人抛光工艺过程的建模与仿真   总被引:6,自引:1,他引:5  
在PUMA-562型机器人上开发了具曲面自动光实验系统,分析了三维模具曲面抛光过程中影响抛光效果的主要工艺参数,提出以等效半径来表征抛光工具与模具曲面的空间相对位置,并利用多元线性回归和正交实验的方法建立了模具曲面抛光工艺过程的模型,仿真和实验结果表明该模型综合反映了抛光工艺参数对抛光效果的影响规律,为模具曲面智能抛光系统的开发奠定了基础。  相似文献   

14.
机械零件的表面质量直接影响其使用寿命.采用电化学机械复合抛光,可以大大提高机械零件的抛光效率,但对于深小孔等抛光工具(磨头)很难深入的小结构,采用此方法工艺上很难实现.脉冲电流电化学抛光可以经济有效地对复杂形状的零件型腔进行抛光.对镍铬合金材料试件进行了脉冲电流电化学抛光的工艺试验,讨论并分析了实验结果,得出了加工参数对表面粗糙度的影响规律,以及各加工参数影响表面粗糙度的经验公式.  相似文献   

15.
电解抛光技术是一种简便易行的表面加工技术,获得试样的表面粗糙度低,光亮度高,常用于电子背散射衍射技术测试试样的最终处理。文章在对电解抛光原理分析和加工工艺的选择和调整的基础上,分别对TRIP钢和钛合金试样进行电解抛光工艺,试样表面满足电子背散射衍射技术的要求。文章对相关的试样制备具有很好的借鉴作用。  相似文献   

16.
针对磁性复合流体黏度可控的特性,研究一种微纳沟槽表面可控抛光加工方法及工艺,实现低成本、可控微纳结构表面加工技术,并将其应用于微纳加工实验教学。采用磁性复合流体作为抛光液,设计端面式和圆周面式两种磁性复合流体抛光机构;根据周期性微米级沟槽表面结构特点,采用圆周面式磁性复合流体抛光机构进行微结构表面抛光加工实验;设计加工工艺,通过实验对比微沟槽周期结构表面加工效果,验证了实验装置及微结构可控抛光加工方法的有效性,实现微沟槽周期结构表面材料可控去除加工。该装置结构紧凑,使用与维护成本低,有效填补面向机械专业制造类课程的微纳加工实验教学装置技术空白。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号