首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
针对船舶可倾瓦推力轴承在实际运行过程中存在的轴系倾斜问题,建立倾斜状态下可倾瓦推力轴承热弹流体动压润滑计算模型,研究倾斜状态对可倾瓦推力轴承静动特性的影响。提出了以倾斜角和轴线投影角两个参数来表征倾斜状态的数学模型;联合热弹流体动压润滑模型和轴向油膜刚度、阻尼系数求解模型,全过程求解可倾瓦推力轴承静动特性。静态性能参数包括载荷、最小油膜厚度、最大油膜压力、最高油膜温度;动态性能参数包括轴向油膜刚度和阻尼系数。结果表明:轴线倾斜使每块瓦承受载荷严重不均,造成各块瓦巨大的性能差异;倾斜角增大使瓦所承受载荷、油膜压力和油膜温度增加,油膜厚度减小,且外载荷越大变化越显著;轴线投影角所在轴瓦承受载荷最大,当轴线投影角在支点附近时,静态性能参数皆有极值存在;轴线投影角在距瓦进油边31°的位置时推力轴承轴向油膜刚度和阻尼系数有最大值。研究结果可为倾斜状态下可倾瓦推力轴承可靠性的提高提供参考。  相似文献   

2.
为使滑靴副具有良好的摩擦性能,应使滑靴副处于全膜润滑状态. 通过耦合流体动力润滑方程、膜厚方程、任一点速度方程、流量平衡方程以及滑靴所受的力和力矩平衡方程,建立了滑靴的摩擦动力学模型,设计了滑靴副模型试验装置,仿真分析与试验研究了工作转速与压力对滑靴副油膜特性(中心膜厚、最小膜厚以及倾斜方位角)的影响. 仿真与试验结果表明,滑靴副的油膜厚度随工作转速的升高而增大,但增大趋势逐渐变缓;滑靴副油膜厚度随工作压力的升高而减小;低速高压下,滑靴副易处于混合润滑状态.   相似文献   

3.
考虑热效应的轴颈倾斜轴承润滑分析   总被引:1,自引:0,他引:1  
文章考虑了润滑油粘温效应的影响,分析了稳态下倾斜轴颈径向滑动轴承的流体动力润滑特性.采用有限差分法求解Reynolds方程,用热平衡方程计算润滑油温升;在是否考虑温度影响的2种情况下,计算了不同轴承偏心率、轴颈倾斜方位和轴颈倾斜角时轴承的油膜压力、油膜反力、端泄流量、温度的变化、轴颈摩擦系数和保持轴承稳定工作的力矩.分析结果表明,轴颈倾斜和润滑油粘温效应对滑动轴承流体动力润滑特性有较大影响.  相似文献   

4.
针对轴颈倾斜下水润滑橡胶径向轴承动力学建模问题,提出了32系数动力学模型,建立了弹流润滑模型,采用差分求解方法求解了8系数模型和32系数模型下的轴承动特性,分析了偏心率和倾斜角的变化对轴承动特性系数的影响。研究结果表明:轴承的8系数模型下刚度和阻尼系数随偏心率的增大而增大,且在大偏心率下呈指数式增大;轴承的32系数模型下角刚度和角阻尼系数也随偏心率的增大而增大;随着轴颈倾斜角增大,32系数模型下轴承的位移刚度系数、位移阻尼系数、角刚度系数、角阻尼系数、角-力交叉刚度系数、角-力交叉刚度阻尼系数、位移-力矩交叉刚度及位移-力矩交叉阻尼系数都相继增大。该研究对水润滑橡胶径向轴承的润滑性能优化设计提供了一定的参考。  相似文献   

5.
低速工况下处于混合润滑状态的滑动轴承易因变形或倾斜而发生磨损。为分析轴颈倾斜和磨损对滑动轴承混合润滑特性的影响,建立了计入轴颈倾斜和弹性变形的平均流量方程、G-T接触方程和Archard磨损方程耦合模型,采用有限差分法及超松弛迭代法计算混合润滑状态下轴承特性参数和时变磨损参数,对比了轴颈倾斜前后或磨损前后轴承的润滑性能,并分析粗糙度和边界摩擦系数等因素对各性能参数的影响。搭建摩擦磨损试验台测试了倾斜状态下轴承的润滑特性,验证了理论模型的正确性。理论分析与试验结果表明:重载大偏心时轴承转变为混合润滑状态,轴颈倾斜程度越大,轴承越容易发生混合润滑;轴承倾斜后,压力峰值和接触区域形状发生改变,磨损量因而发生变化,并且磨损深度分布沿轴向或周向倾斜;磨损降低了油膜的动压效应,并且使膜厚比降低,导致油膜压力峰值下降约20%,接触压力峰值降低约90%,承载力最高下降约19.71%;对比磨损前后的轴承形貌发现,轴颈倾斜使得磨损集中于间隙减小的一端。该研究可为实际工程中轴承的设计提供理论依据。  相似文献   

6.
为了研究重载工况下滑动轴承混合润滑行为,综合考虑轴-润滑介质-轴承-环境之间的耦合热传导效应,建立考虑轴颈受载倾斜的滑动轴承混合热弹流(mixed-TEHD)数值计算模型。模型预测出轴颈受载倾斜及对中状态下的润滑界面油膜压力、油膜厚度、接触压力、摩擦因数、热(弹性)变形以及轴承温度场。研究结果表明:轴颈在受载倾斜状态下,油膜压力、弹性变形、油膜厚度沿轴向呈非对称分布,接触压力集中于轴承末端;轴颈在受载倾斜状态下,轴承圆周方向与轴向温度分布的不均匀性比对中状态的严重,温度比对中状态时的大,同时,沿油膜最高温度处的圆周方向截面与轴向截面内热变形分布具有非对称性,其热变形也明显大于对中状态时的大;在混合流润滑阶段,轴颈受载倾斜对接触载荷、摩擦因数、轴承最高温度以及最大热变形的影响较大。  相似文献   

7.
轴颈倾斜的径向轴承热弹性流体动力润滑分析   总被引:1,自引:0,他引:1  
通过联立求解质量守恒的广义Reynolds方程、能量方程、固体热传导方程和固体变形方程,建立了轴颈倾斜的径向轴承三维热弹性流体动力润滑(TEHD)模型.在此基础上,深入研究了轴颈倾斜径向轴承的TEHD性能.结果表明,弹性变形和热变形都对轴颈倾斜径向轴承的性能具有显著影响.当只考虑弹性变形时,油膜厚度变化曲线出现了局部“凸”的形状,且最大油膜压力减小;当只考虑热变形时,油膜厚度变化曲线出现了局部“凹”的形状,且最小油膜厚度增大,但热变形对最大油膜压力的影响不大;当同时考虑弹性变形和热变形(即完整的TEHD模型)时,轴颈倾斜径向轴承的所有性能参数都发生了明显的变化,因此,对于重载高速的操作工况,有必要建立轴颈倾斜径向轴承的TEHD模型.  相似文献   

8.
采用多重网格技术,通过对乏油弹流润滑基本方程的数值求解研究了椭圆接触乏油弹流润滑,分析了入口初始位置对乏油润滑中心膜厚、最小膜厚、油膜压力及部分油膜比例的影响.结果表明:中心膜厚和最小膜厚随着入口区初始位置远离接触中心而逐渐增大,并最终趋于一个稳定的值.随着入口初始位置向接触中心移动,接触中心最大油膜压力基本无变化,但是二次压力峰值逐渐向出口区移动并减小;油膜压力区逐渐减小,乏油区增大.当入口初始位置达到1.2时,中心膜厚、最小膜厚和压力区已很小,达到了严重乏油状态.  相似文献   

9.
针对水润滑橡胶轴承在混合流态下的润滑问题,基于层流、湍流经典润滑理论建立了水润滑橡胶轴承混合流态下的润滑方程,采用有限差分法分析了混合流润滑下的雷诺数、水膜厚度、衬层变形及水膜压力随偏心率、转速和长径比的变化规律,并将层流、湍流和混合流3种润滑流态下计算得到的润滑特性进行了对比分析。结果表明:混合流润滑方程比层流和湍流润滑方程更适合水润滑橡胶轴承的实际运行工况,混合流润滑下的水膜厚度、衬层变形和水膜压力的取值范围均处在层流润滑和湍流润滑之间;在混合流润滑下,雷诺数在承压区随偏心率的增大而减小,同时随转速的增加而增大;水膜厚度随偏心率的增大而减小,随转速和长径比的增大而增大;偏心率对最大衬层变形的影响最大,转速的影响次之,长径比的影响最小;水膜压力在承压区随着偏心率、转速和长径比的增加均增大。此研究可为准确分析水润滑橡胶轴承实际运行工况下的润滑特性提供参考,也可为计算流体动力学(CFD)仿真水润滑轴承润滑机理的研究提供依据。  相似文献   

10.
考虑瞬态冲击和弹性变形的滑动轴承特性与动力学响应   总被引:1,自引:1,他引:1  
同时考虑瞬态冲击载荷和轴瓦的弹性变形,模拟了舰船在风浪拍击时推进轴支承滑动轴承的润滑特性与动力学响应,研究了聚四氟乙烯(PTFE)弹性金属塑料瓦滑动轴承的最小油膜厚度、最大油膜压力和轴心轨迹随时间的变化情况。运用有限元法求解雷诺方程,将油膜力转化为轴瓦节点力计算了弹性变形;用欧拉法求解轴颈的动力学方程,计算了动态轴心轨迹。对比了刚性瓦与PTFE弹塑瓦滑动轴承的特性,结果表明,轴瓦弹性变形对油膜厚度和油膜压力分布的影响不可忽略,并且轴瓦弹性变形可以提高滑动轴承的承载能力。对比分析了4个不同方向瞬态冲击载荷作用下PTFE弹塑瓦滑动轴承的特性和轴颈的动态轴心轨迹,提出可通过改变轴承静载荷方向、减小瞬态冲击载荷方向与轴承偏心方向的夹角来增加最小油膜厚度,降低最大油膜压力,减小动态轴心轨迹的位移响应振幅,进而改善滑动轴承润滑状态,减小轴瓦的弹性变形量,提高轴承-转子系统的稳定性。  相似文献   

11.
根据实测表面形貌数值拟合了一表面形貌函数,计入了波动载荷效应,考虑了表面粗糙度、时变效应和热效应,对直齿轮进行了微观热弹流润滑研究,分析了载荷波动频率和载荷波动幅值对油膜压力、膜厚和温度的影响。结果表明:低频波动载荷对压力、膜厚和最大温度影响较大,波动载荷频率较高时中心油膜压力、中心膜厚、最小膜厚和最大温度基本不受波动频率影响;较低波动频率下双齿啮合变单齿啮合瞬时的接触区中心位置的瞬态温升较大,载荷波动频率的增大引起节点接触区入口处温升减小,随着波动频率的增大节点处接触中心位置的瞬态温升增大明显;载荷波动幅值较大时,接触区中心油膜压力、中心膜厚、最小膜厚和最大温度波动幅度较大。  相似文献   

12.
谢翌 《科学技术与工程》2013,13(15):4364-4368
基于Navier-Stokes方程组对某型车用汽油机曲轴主轴承油膜特性进行了三维数值模拟,获得了不同轴颈转速下,润滑油油膜压力和组分的分布规律,揭示了曲轴转速对滑动轴承油膜特性的影响。数值模拟结果表明,随着轴颈转速的增加,滑动轴承油膜承载区的作用范围以及油膜最大压力的位置几乎不变;在油膜承载区的相同周向位置处,油膜压力随轴颈转速的增加不仅呈线性增大,而且其在最大压力位置处随轴颈转速增加,增长速度最快。此外,随着轴颈转速的升高,油膜破碎区域内充满空气区域的面积逐渐减小,润滑油入口附近油膜破碎区的面积逐渐增加。  相似文献   

13.
提出了轴颈圆周、径向和轴向三维运动状态下滑动轴承润滑分析的Reynolds方程,研究分析了轴颈轴向运动对滑动轴承的摩擦学性能的影响.计算结果表明,轴向运动的存在,对轴承油膜压力分布、轴承承载量、摩擦系数、维持力矩和端泄流量等摩擦学性能都有着较显著的影响.  相似文献   

14.
针对船用水润滑橡胶轴承在非均匀磨损情况下的润滑特性,首先给出非均匀磨损情况下磨损区域的几何模型,在综合考虑橡胶衬层磨损和弹性变形的情况下建立水润滑橡胶轴承的弹流润滑模型,然后基于有限差分法离散雷诺方程并采用逐次超松弛迭代法求解水膜压力,分析非均匀磨损对水润滑橡胶轴承润滑特性的影响。结果表明:非均匀磨损使轴承的水膜厚度从轴承的前端(磨损厚度最小)到轴承尾端(磨损厚度最大)逐渐增加;水膜压力峰值相应地从轴承的前端到轴承尾端逐渐降低。水膜压力峰值发生的位置和水膜破裂的位置均延后,并且在轴承尾端延后的角度较大。在相同偏心率的情况下,随着最大磨损厚度增加,水膜合力(即承载力)、偏位角和摩擦力均减小。在相同载荷情况下,随着最大磨损厚度增加,轴颈的偏心率增加。发生非均匀磨损后水膜速度不再关于轴承中间截面对称分布,水膜合力的作用位置向轴承前端偏移,同时产生一个较小的附加合力偶,合力作用位置的偏移量随着最大磨损厚度和偏心率增加而增加。  相似文献   

15.
文章建立了含有固体颗粒的直齿轮弹流润滑模型,推导了Reynolds方程,考虑了时变效应和热效应,分析了固体颗粒的形状尺寸和速度对油膜压力、膜厚以及温度的影响。结果表明:考虑固体颗粒后,颗粒所在区域的油膜压力变大,膜厚变小;移动的颗粒能够小幅度增大膜厚,但速度过大则膜厚减小;固体颗粒形状越接近球形时,油膜压力增幅变大,膜厚变小,颗粒越扁长时,油膜压力增幅变小,膜厚变大;考虑颗粒后的最小膜厚变小,最大温度升高明显;在颗粒位置处,油膜温度明显升高,静止颗粒引起的温升最小,且随着颗粒速度的增大,颗粒所在区域的最大温升位置右移,整体温度分布也随着颗粒速度的增大而变化。  相似文献   

16.
表面粗糙度对低速水润滑滑动轴承混合润滑性能的影响   总被引:1,自引:0,他引:1  
针对船用滑动轴承在低速水润滑工况下液膜承载能力不足导致的局部固体接触碰磨问题,研究了表面粗糙度对水润滑滑动轴承混合润滑性能的影响。假设轴颈和轴承表面粗糙峰服从高斯分布,以粗糙峰高度综合标准差表征表面粗糙度,联立平均雷诺流体润滑方程和GreenwoodTripp(GT)固体表面接触方程,对比分析了全膜润滑和混合润滑下的液膜厚度和压力分布,针对几种典型转速研究了表面粗糙度对轴承的液膜承载力及其最大压力、粗糙峰接触承载力及其最大压力、偏心率和最小名义膜厚的影响。数值计算结果表明:在低速水润滑工况下,混合润滑模型的最大液膜压力比全膜润滑模型降低一个数量级以上,粗糙峰接触压力的产生使得最小名义膜厚增加;随着表面粗糙度的增加,液膜承载力、偏心率、最大液膜压力和最大粗糙峰接触压力呈减小趋势,粗糙峰接触承载力和最小名义膜厚呈增加趋势;在混合润滑下转速对最小名义膜厚和偏心率的变化曲线没有影响。该研究可对低速水润滑滑动轴承优化及可靠性设计提供一定的参考。  相似文献   

17.
基于点接触弹流润滑理论,建立角接触陶瓷球轴承弹流润滑的数学模型,采用多重网格法分析油气润滑条件下内部接触区的润滑状态,得到角接触陶瓷球轴承的点接触弹流润滑完全数值解.分析结果表明:由于颈缩的存在,在相应的位置上将出现二次压力峰;在二次压力峰处,油膜开始收缩,形成出口区的颈缩现象;随着转速的增大,外圈油膜最大压力连续增大,内圈油膜最大压力变化不明显,内、外圈最小油膜厚度随转速增大而增大;轴承载荷影响主要表现在压力分布上,随着载荷逐渐增大,内圈接触区油膜最大压力变大.  相似文献   

18.
对大型轧机油膜轴承的热弹性流体动力润滑特性及能量方程的求解方法进行了理论研究,利用有限差分法,通过联立求解Reynolds方程、、轴颈和锥、衬套的传热方程以及膜厚方程、润滑油的粘度和密度方程,对油膜轴承的热效应问题进行了数值求解.在求解过程中考虑了粘度和密度随压力和温度变化的情况,分析计算了不同工况下的刚性与弹性油膜温度分布情况.  相似文献   

19.
轴向柱塞泵回程装置对滑靴动态特性的影响研究   总被引:1,自引:0,他引:1  
考虑了滑靴的倾斜以及滑靴底面的弹流润滑效应,同时引入了滑靴与不同回程装置间的相互作用,对轴向柱塞泵滑靴副润滑油膜的动态规律进行了数学建模,研究不同回程装置对滑靴动态油膜特性的影响。实现滑靴动力学特性与摩擦特性的耦合求解,获得了缸体转动周期内滑靴润滑油膜的变化规律,探讨了中心弹簧回程机构以及固定间隙回程机构对滑靴动态油膜特性的影响。分析结果表明:高速运转下,滑靴在低压区会发生严重倾斜。采用中心弹簧回复装置在减缓滑靴倾斜程度时会减小滑靴在高低压区的工作膜厚。使用固定间隙回程机构不仅不影响滑靴在高压工作区的膜厚状态,还可以提高滑靴低压工作区的最小膜厚,因而显著改善滑靴倾斜程度。   相似文献   

20.
动力参数与应力偶参数对轴承润滑性能的影响   总被引:1,自引:1,他引:1  
研究了不同动力参数与应力偶参数对轴承润滑特性的影响.以微连续介质理论为基础,推导了二维非稳态应力偶流体动态润滑轴承的变形Reynolds方程.数值分析结果表明,应力偶流体与牛顿流体相比,油膜压力增加,从而油膜的承载能力提高,摩擦系数减小.轴承的偏心率越大,应力偶参数对承载力的影响越明显;动力参数越大,最大油膜压力值越大,应力偶效应越显著,且随动力参数值的增加,最大油膜压力值出现在θ增大的方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号