首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
液化天然气(LNG)点供站因其便利性和经济性已成为城镇和工业补充气源的优先选择,但由此带来的安全隐患和突发事故也引起关注和重视。为研究LNG点供站管线3种泄漏方向下天然气浓度分布、爆炸超压和温度变化规律,基于计算流体动力学方法,使用FLACS软件建立三维模型并进行数值模拟。结果表明:水平泄漏和向上45°泄漏条件下,泄漏气体云团影响范围达到稳定的时间分别为120和30 s,垂直泄漏气云达到稳定时间最短仅需5 s。水平泄漏场景下,泄漏气体可扩散至气化器以及储罐周围,其影响范围大于向上45°泄漏和垂直泄漏。向上45°泄漏爆炸产生的最大超压高于其他两个场景下的最大超压,且影响范围最大。水平和向上45°泄漏时,高温区域主要集中在气化器的底部和左侧,2种场景燃烧产生高温对气化器的安全运行具有较大的安全隐患,而垂直泄漏高温区域主要分布在泄漏口上方,对设备造成的影响最小。  相似文献   

2.
液化石油气(LPG)是常见的易燃易爆化学品,采用PHAST程序中的UDM模型验证数值模拟的可行性,以控制变量法研究同一泄漏孔径下温度、环境和泄漏口方向对事故后果的影响规律.结果表明,随着温度升高,LPG泄漏扩散距离变远、闪火影响区域扩大,但喷射火辐射量随之降低,特别是在150~200 m距离时衰减明显;表面粗糙度值越低,LPG泄漏扩散越远,爆炸冲击波传播的较远,但表面粗糙度对喷射火热辐射强度影响较小;泄漏口方向对事故的影响较大,泄漏口水平方向的泄漏距离最远,泄漏口方向垂直向下时,容易形成液池,泄漏口向上时,扩散距离以及闪火和喷射火的影响范围最小.   相似文献   

3.
针对竖直管内含不凝气体水蒸气冷凝传质传热过程开展研究.基于ANSYS Fluent软件平台建立了多相多组分三维数值计算模型,通过将管内中心轴线和壁面上多点温度分布与Kuhn试验结果进行对比,验证了模型的可靠性.在此基础上,考察了混合气体进口温度、速度、压力以及不凝气体体积分数对管内冷凝传热过程的影响规律,并基于不凝气体体积分数修正,提出了竖直管内含不凝气体水蒸气冷凝传热关联式,关联式误差范围为-20%~18%;同时,探究了不凝气体对水蒸气冷凝传质过程的影响规律,发现冷凝水率和平均传质速率随不凝气体体积分数的增大呈现先增大后减小的趋势,少量不凝气体具有促进水蒸气冷凝的作用,不凝气体体积分数为23.2%左右时,冷凝水率和平均传质速率最高.研究结果可为含不凝气体水蒸气的传热关联式和传质模拟研究提供参考.  相似文献   

4.
U型埋管系统地下传热数值模拟   总被引:1,自引:0,他引:1  
采用柱热源模型,建立了无限大区域内U型换热器与土壤间非稳态传热的二维数学模型.以天津地区的U型垂直埋管实验得到的数据作为参数,利用FLUENT软件进行模拟,得出该地区土壤源热泵间歇运行6年的土壤温度分布规律:距离地埋管最近的1,m点其变化速度最快、幅度最大;随着典型点与U管的距离增加,其变化速度及幅度都将减小;距离地埋管最远的7 m点其温度几乎不受热泵系统运行的影响,始终维持在初始温度14.5,℃左右.  相似文献   

5.
水平管降膜换热器具有热质传递效率高、阻力小、结构简单等优点,被广泛应用于化工等传统领域及能源利用的节能减排领域。降膜换热器内部发生复杂的流动及传热传质相互耦合过程。介绍了实验及模拟研究手段的进展,综述了不同操作参数(气体温度、流向及流量,溶液流量、温度及浓度,内部媒介流量及温度等)与结构参数(管径、管间距等)对水平管降膜管间流型、液膜厚度与润湿性等流动特性的影响规律,以及对蒸发传热特性、吸收传热传质特性等换热器性能的影响规律,包括整体性能和局部微细特征,为水平管降膜换热器的性能优化提供理论支撑。指出在不同气流特征以及多因素相互作用下多维度的局部流动与传热传质性能的耦合影响规律以及强化换热手段会是水平管降膜换热器未来研究的重点方向。  相似文献   

6.
为研究局部高温壁面下,复合腔体内自然对流及传热传质规律,采用一区域模型整体对腔内温度场、浓度场和流场进行求解.高温壁面无量纲长度A=0.5(A=a/H),局部壁面温度为Th,浓度为Ch;右侧垂直壁面分别为Tc和Cc.对局部高温壁面的相对位置B、多孔结构的孔隙率ε、瑞利数Ra的影响进行综合的数值计算,由数值计算结果得出:局部高温壁面位置不同,腔内流体流动及传热传质不同,B值在0.6附近时对应的平均努赛尔数Nu和平均舍伍德数Sh最大;ε=0.7时Nu出现最小值;Ra对传热传质影响也较大.  相似文献   

7.
低温热水地板辐射采暖盘管对系统的安全运行具有重要意义。由于室内装修等施工作业造成地板辐射采暖盘管缺陷,从而导致系统运行时泄漏事故的发生,为减低此类事故的危害性及时判定泄漏点位置对防止泄漏的扩散尤为重要。本文通过分析地板辐射采暖盘管泄漏特性,建立盘管泄漏过程传热传质模型,并利用FLUENT软件模确定盘管泄漏前后地板和水泥层表面温度场分布情况。研究结果表明:(1)盘管泄漏初期,水泥层表面原始温度场迅速被破坏,而整个地板表面变化较弱;随着泄漏时间的加长,地板表面温度场也造成破坏,可以通过其表面温度场明显判断泄漏点位置。(2)泄漏影响区域主要由三个区域组成,在泄漏口附近较大区域为1区恒定高温区,温度梯度变化较小;临近1区外为2区温度梯度区,温度梯度变化剧烈;受泄漏影响较弱区域为3区地板稳态温度区,其温度主要由原始地板温度场控制。  相似文献   

8.
采用双流体模型计算了液氮在垂直管内的上升流动沸腾过程,考察了壁面热通量和液体流量对流动及传热传质特征的影响.结果表明:垂直上升流动沸腾中重力压降占主导地位;根据截面液体温差的变化可判断沸腾模式的转变;壁面热通量与液相流量的相对大小决定了沸腾过程中的传热传质特征.  相似文献   

9.
应用FLUENT软件对某光纤企业丙烷泄漏后的扩散进行数值模拟,在设置边界条件及计算模型的前提下,探究丙烷扩散规律,得到泄漏后丙烷气体的速度、温度、密度、质量浓度等分布情况.结果显示,泄漏后丙烷气云速度由超声速变至亚声速,最后在距泄漏源较远处近似环境风速;在泄漏口垂直方向上,温度呈规律性变化,风口处变化最为明显,近地面温度变化缓慢,反之亦然;密度在泄漏源处可达1.49kg/m3,随着扩散逐渐接近空气密度;泄漏后大气中丙烷的含量从开始向周边先增大后减小,垂直方向上近地面丙烷含量较其他区更高.此结果可为该种易燃易爆气体的污染监控提供一定的理论依据.  相似文献   

10.
基于分布参数燃料电池模型的SOFC-GT混合发电系统模拟   总被引:1,自引:0,他引:1  
针对混合发电系统模拟需求,建立管式SOFC准二维分布参数模型,沿流道方向考虑传热、传质数学模型,沿电池厚度方向考虑电化学反应以及多孔电极中的多组分气体扩散。结合系统其他部件(燃气轮机、重整器、换热器等)模型,对某公司220 kW SOFC-GT混合发电系统进行模拟分析,模拟了参比工况电池参数分布,研究了可控参数(工作电压、入口燃料流率、燃料循环比率、旁路空气比率)对系统性能、状态点参数及电池参数分布的影响规律。结果表明:系统参比工况稳态运行效率在52%以上,过电位、电流密度和温度沿流道方向变化显著,明显呈现非线性趋势,燃料、固体、空气的温度也有较大差异,在系统运行特性分析中有必要采用分布参数模型以合理描述电池中发生的物理化学变化。  相似文献   

11.
水平方向放置一无限长高温可渗透多孔介质平板,竖直方向施加稳恒磁场,温度较低的导电流体垂直冲击该平板后,在平板驻点附近会形成很薄的边界层,边界层内将发生流动、传热和传质等物理过程,在此过程中要考虑辐射换热的影响.辐射热源项采用Rosseland假设进行简化处理,采用配置点谱方法进行空间离散求解.讨论了抽吸系数、磁场参数、辐射参数、对流换热参数等对边界层内流动、传热和传质及其壁面摩擦系数、努塞尔数和舍伍德数等的影响.结果表明,抽吸系数和磁场参数的增大使得速度边界层变薄,辐射参数增大使得温度边界层变厚.  相似文献   

12.
过热器单管泄漏故障模型及其仿真   总被引:1,自引:0,他引:1  
根据单相介质受热管在泄漏工况下的传热传质机理,将一根过热器单管简化为两个集中参数受热管环节与一个分流环节的串联,给出了过热器单管工质泄漏故障的数学模型。该模型适用于对一类工质微量泄漏影响问题的分析研究。仿真结果表明:1)过热器单管泄漏对泄漏点后的金属管壁温度有较强的影响;2)随着泄漏量的增大,金属管壁的温度也呈升高趋势,且其升高速度与泄漏量的增加成正比,金属管壁温度的变化同时受泄漏点位置和泄漏量的影响,但泄漏量的影响是主要的因素;3)随着泄漏量的增加,金属管壁温度的上升时间缩短  相似文献   

13.
【目的】油页岩原位开采过程中传热效率差,各向异性差异显著,油页岩原位开采中存在各向异性传热差异问题。【方法】以新疆巴里坤油页岩制标准样本试件,采取多种室内试验手段对不同温度下块状油页岩水平、垂直层理传热差异进行探究,并进行原位开采模拟。【结果】实验结果表明:1)随着温度升高,各层理方向热传导系数均呈“降低”趋势,但油页岩平行层理方向的热传导系数均大于垂直层理方向;2)随温度升高,比热容先升高再降低,当温度为400℃时,油页岩比热容值最大;3)结合显微CT图,随着温度的升高,裂隙增多对垂直层理方向热量传导的影响大于平行层理方向。基于上述实验测试参数,同时利用COMSOL软件建立油页岩储层原位电加热的“热-固”耦合模型,模拟结果表明:随加热时间的增加,各向异性传热差异逐渐开始呈现;当加热时间为120 d时,加热井附近区域温度上升,并未表现出明显的各向异性;当加热到600 d时,平行层理方向的传热区域明显大于垂直层理方向,呈“椭圆”状;加热到1 440 d时,传热区域小幅度增加,加热井控制区域页岩基本热解完成。  相似文献   

14.
天然气管道泄漏检测与定位试验研究   总被引:1,自引:0,他引:1  
在天然气的管道输送中,泄漏检测和定位是非常重要的。在实时模型法的基础上,通过实验和数字仿真,分析了泄漏量和泄漏点的位置与定位误差之间的影响关系。实验结果表明,随着泄漏量的增加,定位误差逐渐减小;当泄漏点距离管线检测点较远时,在相同泄漏量的情况下,定位误差相对较大。该研究结果能够对天然气管道的泄漏检测和定位提供有效支持。  相似文献   

15.
为了探讨跨季节蓄能型地源热泵地下蓄能与释能特性,以垂直U形埋管地下蓄能区域为研究对象,建立了准三维蓄能传热数学模型.分析了蓄能过程中土壤热作用半径与蓄热率随运行时间的变化及全年运行过程中土壤温度的动态变化规律,探讨了土壤类型与释热率对地下蓄能与释能特性及全年土壤热平衡问题的影响.结果表明:蓄能过程中不同半径处土壤温度会逐渐升高,热作用半径随时间而增大,但逐渐趋于平稳;同时,土壤类型对蓄能过程中热扩散半径与速度有影响;此外,负荷不平衡率与土壤类型对全年土壤热平衡也有一定的影响.实验验证表明,所建地下蓄能传热模型可有效模拟地下蓄能与释能过程.研究结论对跨季节蓄能型地源热泵系统的优化设计与运行具有重要指导意义.  相似文献   

16.
介绍了几种常见土壤源热泵U型埋管换热器传热模型,建立了单U型垂直埋管换热器的非稳态传热模型.采用隐式有限差分法对冬季运行工况进行数值模拟,得到了U型埋管出口水温的变化规律及土壤温度场的分布规律.  相似文献   

17.
针对管道中天然气的泄漏,尤其是含硫集输管道的泄漏将对周围环境造成极大的威胁,对平坦地区含硫化氢天然气管道泄漏扩散进行了数值模拟。模拟分析发现:静风条件下,天然气在大气中自由扩散稳定后,压力、速度和浓度分布基本对称,喷口附近、喷口垂直向上区域以及接近地面区域的硫化氢浓度很高,属于高危险区域;有风条件下,气体扩散范围增大,风不仅对污染物起输送作用,还起稀释扩散作用,但在地面附近影响效果并不明显,而随高度的增加,其效果将不断增强;在无风情况下,喷射区域基本在泄漏口正上方,而有风时,喷射区域发生弯曲;危险区域随着风速的增大而减小,静风时,其范围最大。模拟得出天然气管道泄漏点外扩散的规律能够为实际安全生产和应急抢险提供较好的参考依据。  相似文献   

18.
目的研究太阳墙内部各断面温度及空气流速的分布情况及影响因素,为优化太阳墙结构性能和运行节能提供基础和保障.方法建立太阳墙的三维模型,应用计算流体力学软件FLUENT的Realizable k-ε模型,对太阳墙系统不同出口速度工况进行数值模拟,分析太阳能新风墙内部宽度方向断面平均温度分布、高度方向断面平均温度分布以及平均空气流速分布,进而得出太阳能新风墙内部空气流动及传热情况.结果太阳墙系统内部各断面的温度分布随太阳墙小孔位置的分布而波动;太阳墙新风系统宽度方向各断面温度分布趋于均匀;高度方向各断面平均温度随着高度的增加波峰值及波谷值均有所下降,出口风速的增大使高度方向各断面温度分布趋于均匀;垂直于高度方向各断面的平均空气流速随高度升高整体呈上升趋势,而处于空气流动方向改变的区域垂直于断面的平均空气流速骤降.结论 CFD数值模拟的方法研究太阳墙内部流动及传热规律是可行的.  相似文献   

19.
为了探究冷流率对大口径涡流管节流降压效果的影响,基于Fluent改变冷流率值,对比模拟计算结果发现:主管段区内外旋气体存在能量损耗,轴向位置出现压力滞止点和速度方向折点,径向位置r=28 mm处出现分界层。冷流率0.1至0.5,外旋气体温度上升趋势平缓,制热效果不明显;冷流率0.6至0.9,外旋气体温度上升趋势明显,制热效果加强;冷流率增大过程中,内旋气体温度下降趋势平缓,制热效果减弱。热端出口气体压力随冷流率增大而增加,大部分气体流至冷端出口,导致冷端压力变化梯度明显;冷流率过大,热端出口节流降压效果降低,无法满足节流需求。冷热端出口压差变大,外旋气体流动受阻,速度减小;内旋气体流动加快,速度增大。综合分析得出:冷流率0.5时,大口径涡流管节流降压效果最佳,节流区间3 MPa左右,冷热端出口气体温降区间均为5 K,忽略传热损失,节流前后气体温降区间几乎为零,满足后续工艺温度要求。  相似文献   

20.
在气体吸附分离过程中,吸附床内气体流动过程实质上是一个变质量流动过程.借助二维模型对吸附床内气体的速度分布进行了研究,在模型中考虑了吸附引起的质量变化和床层的径向空隙率的分布.结果表明:(1)多孔介质本身对流动有着重整作用,使流动趋于均匀分布,但是进口端的吸附剂受入口效应的影响较大,在此区域速度呈W形分布,部分区域达到流化状态;(2)在吸附步骤,速度在传质区有着较大的变化,在其他的三个步骤内,速度沿吸附剂床层近似线性变化;(3)降压步骤中,床中气体速度较高,对颗粒冲击较大,易引起摩擦和粉化,应合理控制降压速率;(4)气体吸附引起的质量变化对压力和速度有着重要影响,不能轻易忽略.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号