首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
为解决相关滤波(Discriminative Correlation Filter,DCF)算法在快速运动、遮挡、尺度变化等复杂情景下的跟踪失败问题,提出一种融合运动状态信息的高速相关滤波目标跟踪算法.在传统DCF算法基础上做出以下改进:(1)在跟踪框架中融入卡尔曼(Kalman)滤波器,利用目标运动状态信息对预测运动轨迹进行修正,以解决目标复杂运动时易跟丢问题,提高跟踪精度;(2)训练一个独立的尺度相关滤波器进行目标尺度预测,并利用主成分分析法(Principal Component Analysis,PCA)进行特征降维处理,提高跟踪速度;(3)提出一种高置信度更新策略判断是否对位置滤波器进行模板更新,以及是否采用Kalman滤波器预测位置作为目标位置.最后在OTB-100数据集上进行算法测试,提出算法平均精度与成功率分别达到74.8%与69.8%,平均帧率为84.37帧/s.相较其他几种主流算法,本文算法有效提高跟踪性能,并保证了跟踪速度,满足实时性要求,在遮挡、背景模糊、运动模糊等复杂情况下能够保持良好的跟踪效果.  相似文献   

2.
针对传统的核相关滤波目标跟踪算法遮挡判断失败的问题,提出一种抗遮挡的核相关滤波目标跟踪算法.首先,在核相关滤波器框架上根据最小二乘分类器获得目标位置.然后,引入一个多尺度滤波器,并通过计算滤波器的响应最大值进行尺度预测.最后,在目标模型更新方面,根据目标位置置信图峰值尖锐度的差异性,正确更新模型.实验结果表明:文中算法的平均位置误差为6.18px,在阈值为20px时,平均距离精度为97.68%,平均帧率为30.8帧·s~(-1);其能在复杂背景下有效地解决目标尺度变化、完全遮挡等问题,具有更高的鲁棒性和精确性.  相似文献   

3.
针对传统核相关滤波器跟踪方法(KCF)在尺度估计不足和抗遮挡性低等问题上,本文提出了一种把梯度直方图和颜色直方图相结合,并利用尺度估计策略提升跟踪框适应性的核相关滤波跟踪算法.该方法首先通过建立核岭回归模型,使用二维核化相关位置滤波器,融合方向梯度直方图(HOG)特征和颜色直方图(CN)特征,采取根据响应大小的方式加权融合跟踪坐标,精确确定目标的中心位置;然后,利用滤波响应的峰值旁瓣比的高低来判定是否发生遮挡,当特征响应的旁瓣比低于设定的阈值时,暂停更新滤波模板;最后,利用光流法计算出视频帧间关键角点的位移来估计被跟踪目标的形变比例和尺寸,同时结合尺度集合进行跟踪框缩放.通过理论分析和在跟踪基准数据库OTB-2013中的50组视频序列进行仿真实验,对比了当下主流的相关滤波跟踪算法,在保证实时性的同时,较原核相关滤波算法跟踪的精度提升了14.5%,成功率提高了9.2%,并且在复杂场景下具备较强的抗遮挡性和鲁棒性.  相似文献   

4.
为了解决核相关滤波跟踪算法在复杂场景下跟踪效果差的问题,提出了一种融合深度特征和尺度自适应的相关滤波目标跟踪算法。首先,通过深度残差网络(ResNet)提取图像中被跟踪区域的深度特征,再提取目标区域方向梯度直方图(FHOG)特征,通过核相关滤波器学习,分别得到多个响应图,并对响应图进行加权融合,得到跟踪目标位置。其次,通过方向梯度直方图(FHOG)特征,训练一个PCA降维的尺度滤波器,实现对目标尺度的估计,使算法对目标尺度发生变化有很好的自适应能力。最后,根据响应图的峰值波动情况改进模型更新策略,引入重新检测机制,降低模型发生漂移概率,提高算法抗遮挡能力,在标准数据集OTB100中与其他7种目标跟踪算法进行比较。结果表明,相比原始KCF算法,改进后的KCF算法精准度提升了29.4%,成功率提升了25.9%。所提算法实现了对跟踪目标位置的精准估计,提高了尺度自适应能力和算法速度,增强了算法抗遮挡能力。[JP]  相似文献   

5.
针对复杂跟踪环境条件下目标的跟踪失败问题,提出一种基于多相关滤波器组合的目标跟踪方法.首先2个分别采用颜色属性(Color Name,CN)特征和方向梯度直方图(Histogram of Oriented Gradient,HOG)特征的核相关滤波器(Kernelized Correlation Filter,KCF)通过自适应融合手段进行响应图信息融合,确定目标的预测位置;然后通过以目标区域为基础进行多尺度采样,提取CN-HOG拼接特征构建尺度相关滤波器,得到目标的最佳尺度;最后设计了模型的自适应更新策略,通过判断目标是否发生遮挡来决定是否在当前帧进行模型更新.在50组视频序列上对所提算法与6种当前主流的相关滤波跟踪算法进行了实验.实验结果表明,在复杂的跟踪环境条件下,所提算法取得了最好的跟踪精度和成功率,能够有效处理目标遮挡和尺度变化等问题,且具有较快的跟踪速度.  相似文献   

6.
针对传统的核相关滤波器(KCF)算法无法很好地解决目标跟踪过程中的尺度不变性和模型漂移问题,提出了一种改进的抗遮挡尺度自适应核相关滤波器算法。使用平均峰值相关能量(APCE)和相关滤波响应峰值作为跟踪置信度指标判断目标是否受到遮挡,在未遮挡的情况下,对目标进行尺度缩放,通过滤波器之后计算相应的响应值,比较不同尺度响应值的大小,最大值即为最佳的目标尺度值。采用OTB-2013评估标准,与传统KCF对比,新算法在目标受到遮挡时,跟踪成功率与精确度有明显提高,同时适应目标尺度变化,具有较强的鲁棒性。  相似文献   

7.
为解决时空正则项的相关滤波视觉跟踪算法在目标部分遮挡时存在的模型漂移和尺度估计不准确问题,提出了结合自适应空间权重的改进型时空正则项跟踪算法。采用平均特征能量比将无法准确表达目标或过多表达背景信息的特征通道裁剪掉,以提高跟踪精度。在滤波器训练时加入空间权重正则项,利用时间正则项在目标遮挡时被动更新滤波器,使得在空间权重更新时更为准确,以此着重学习目标未被遮挡部分,获取可靠的相关滤波器系数。将滤波器求解划分为2个子问题,分别采用交替方向乘子法进行优化计算,保证算法运算速率。在牛顿迭代法中设置精度阈值,在保证定位精度的同时减少迭代次数。实验结果表明:在OTB-100数据集上所选择的6个视频序列中,所提算法较STRCF算法的平均中心位置误差降低了12.3像素,平均重叠率增加了7%,运算帧率可达19.25帧/s;在OTB2015遮挡视频序列中,所提算法较STRCF算法的成功率曲线下积分面积(S_(AUC))增加了0.7%,使用深度特征的所提算法较DeepSTRCF和ASRCF算法的S_(AUC)分别提升了3.9%与0.9%。  相似文献   

8.
针对视觉跟踪中运动目标鲁棒性跟踪问题,结合高斯核函数和卷积神经网络(CNN),提出一种无需训练的卷积神经网络提取深度特征的视觉跟踪算法.首先,对初始图像进行归一化处理并聚类提取目标信息,结合跟踪过程中目标信息共同作为卷积网络结构中的各阶滤波器;其次,通过高斯核函数来提高卷积运算速度,提取目标简单抽象特征;最后,通过叠加简单层的卷积结果得到目标的深层次表达,并结合粒子滤波跟踪框架实现跟踪.结果表明:简化后的卷积网络结构能够有效地应对低分辨率、目标遮挡与形变等场景,提高复杂背景下的跟踪效率.  相似文献   

9.
改进的核相关自适应目标跟踪   总被引:1,自引:1,他引:0  
针对目标跟踪中出现的快速运动、尺度变化、遮挡等问题,提出基于遮挡检测的核相关自适应目标跟踪。该方法首先,利用核函数对正则化最小二乘分类器求解获得核相关滤波器,其次,利用核相关滤波器计算特征响应图,同时学习一维尺度滤波器对尺度进行估计,最后,通过响应图的最大值和振荡程度来判断目标是否被遮挡,在未受到遮挡的情况下,更新学习目标的外观模型和尺度模型,实现自适应目标跟踪。在公开的标准数据集上的实验结果表明,相比原始核相关滤波算法,平均中心位置误差降低15%,平均重叠率提高10%,且在目标尺度发生变化、遮挡、光照变化、快速运动等复杂场景下有较强的鲁棒性、适应性。  相似文献   

10.
为了解决目标跟踪中出现的快速运动、尺度变化、遮挡等问题,提出基于遮挡检测的核相关自适应目标跟踪。该方法首先利用核函数对正则化最小二乘分类器求解获得核相关滤波器;其次利用核相关滤波器计算特征响应图,同时学习一维尺度滤波器对尺度进行估计;最后,通过响应图的最大值和振荡程度来判断目标是否被遮挡;在未受到遮挡的情况下,更新学习目标的外观模型和尺度模型,实现自适应目标跟踪。在公开的标准数据集上的实验结果表明,相比原始核相关滤波算法,平均中心位置误差降低15%,平均重叠率提高10%;且在目标尺度发生变化、遮挡、光照变化、快速运动等复杂场景下有较强的鲁棒性、适应性。  相似文献   

11.
针对现有目标跟踪算法在跟踪过程中遇到目标形变、遮挡等干扰属性导致不能对目标进行有效跟踪的问题,提出一种基于轻量卷积神经网络(lightweight convolutional neural network,LWCN)的目标跟踪改进算法。首先利用改进的卷积神经网络对模板图片和跟踪图片进行特征提取,并将不同层次的特征图充分利用,解决了随着网络加深而导致部分特征丢失问题;其次融合CN特征和HOG特征作为相关滤波器中目标特征表达,增强在不同干扰属性下的目标描述能力;再次通过最大响应值对当前目标位置和目标尺度进行判断,并决定是否更新滤波器模板;最后将LWCN算法与其他算法在OTB50、OTB100、UAV123等数据集上进行性能对比实验。实验结果表明,LWCN算法具有较好的稳定性和实时性,并在遇到形变、遮挡、光线和背景变化时,跟踪结果优于大部分算法。  相似文献   

12.
提出一种基于深度学习的多模型(卷积神经网络和卷积深信度网络)融合目标跟踪算法.该算法在提取候选粒子方面,使用选择性搜索和粒子滤波的方法.CVPR2013跟踪评价指标(50个视频序列、30个跟踪算法)验证了:该算法在跟踪中能有效地缓解目标物体由于遮挡、光照变化和尺度变化等因素造成的跟踪丢失情况的发生.  相似文献   

13.
融合背景信息的改进粒子滤波跟踪算法   总被引:1,自引:1,他引:0  
为消除传统粒子滤波算法在跟踪目标受到相似背景干扰和遮挡时,容易造成跟踪误差增大或跟踪失效的影响,提出融合背景信息的改进粒子滤波跟踪算法.利用对数似然函数将背景信息融入目标模型,并将目标分为多个子区域增强目标模型的可靠性,有效克服了相似背景对目标的干扰;然后存储一定时间的历史轨迹信息,通过最小二乘法进行拟合并预测下一帧目标出现的位置,有效克服了遮挡对跟踪的影响.实验结果表明,该算法比传统的粒子滤波算法具有更强的抗背景干扰能力,在遮挡情况下也有更好的跟踪精度.  相似文献   

14.
李成功  曹宁  王娴珏 《科学技术与工程》2012,12(21):5337-5341,5346
针对复杂背景下单一的颜色特征不能准确跟踪目标的问题,提出了一种改进的目标跟踪算法。该算法利用跟踪目标的颜色特征和运动边缘特征来表示目标。在粒子滤波的框架下融合特征信息从而进行目标跟踪,能够有效地避免单一颜色特征在跟踪过程中受到相似背景、遮挡等问题的干扰。通过与基于单一颜色特征跟踪实验误差数据的分析,实验结果表明该算法在复杂背景以及目标遮挡等情况下能达到较好的目标跟踪效果,实现目标的准确跟踪。  相似文献   

15.
为了解决场景中可能发生的运动模糊、快速移动、尺度变化、光照变化、目标遮挡、复杂背景等场景变化问题,融入背景感知可以有效地提高视觉跟踪算法的鲁棒性.提出了基于加权背景感知框架的相关滤波(WBACF)视觉跟踪算法.根据背景中不同区域与跟踪目标运动相似度的大小,赋予背景区域不同的权值,计算权值矩阵,从而训练相关滤波器.通过在...  相似文献   

16.
针对复杂场景下目标跟踪算法存在的跟踪目标丢失漂移等问题,提出一种粒子滤波框架下基于卷积神经网络(convolutional neural network,CNN)的目标跟踪算法.该算法采用CNN提取跟踪目标的高层语义特征,并引入离线训练方式,提高训练效率以及特征提取的泛化能力;利用粒子滤波算法框架,实现目标运动状态的有效估计;同时采用长时与短时两种更新策略,并引入困难样本挖掘的在线训练方式,以适应目标外观变化与背景干扰等复杂情况.仿真实验结果表明本文算法能有效适应遮挡、光照、剧烈运动等场景.与多个当前的跟踪算法在公开测试样本下进行了结果比较和分析,验证了本算法在解决跟踪目标丢失漂移等问题上的有效性.   相似文献   

17.
针对目标跟踪过程中由于遮挡导致的算法性能下降的问题,在分析和研究核相关滤波算法的基础上提出了一种尺度自适应的分块跟踪策略.首先从目标中心划分子块,使用融合梯度特征和颜色特征的局部核相关滤波器单独跟踪每个目标子块,并结合目标子块与整体间的位置约束关系得到目标中心位置的粗略估计,然后由全局滤波器用作初始估计以确定目标中心的...  相似文献   

18.
在复杂场景下,目标物部分遮挡或光照变化会引起跟踪算法效率的降低,而全局模板在目标受到遮挡时不能较好地跟踪。本文结合粒子滤波与稀疏表达,提出一种改进的目标跟踪算法。通过提取目标特征集构造过完备模板集,对该模板集采用分块策略进行多尺度分块,从而提取目标的全局和局部特征直方图,对全局及局部特征直方图进行稀疏表达,并结合粒子滤波算法的粒子后验概率来描述当前目标状态,实现对目标的跟踪。仿真实验结果表明:和经典跟踪算法相比,该算法能够在遮挡环境下高鲁棒性对目标地进行跟踪。  相似文献   

19.
针对传统的相关滤波方法采用手工特征提取训练样本,限制了跟踪性能的进一步提升,在相关滤波框架下,探讨了深度神经网络VGG-16不同卷积层特征的目标跟踪效果,研究发现,从VGG-16提取的特征相对于传统手工特征具有显著优势;而在深度特征中,以第一层和第五层对目标跟踪性能的提升最为明显.以此为依据,提出了用第一层和第五层特征分别训练相关滤波器、将两者的相关响应图加权后进行目标定位.在OTB2013数据集上的实验结果表明:该方法对跟踪精度和鲁棒性均有进一步的改善.  相似文献   

20.
真实环境下目标跟踪的难点在于兼顾准确度和实时性。提出一个基于相关滤波器的动态更新和尺度自适应跟踪算法,通过选取高效的特征组合,滤波器的动态更新以及快速的尺度估计,提升了跟踪器的精度和成功率,同时保证了算法的实时性。另外,为了应对漂移、遮挡等问题,采用极限学习机作为局部目标搜索的分类器,帮助跟踪器找回目标。在标准测试库(OTB)上的实验结果表明本文算法在精度、效率和鲁棒性方面均优于现有的跟踪方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号