首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为提高不同工况下驾驶机器人操纵试验车辆的转向精度和自适应能力,提出了一种基于自适应曲线预瞄的驾驶机器人转向操纵粒子群优化滑模控制方法。首先建立了试验车辆动力学模型和驾驶机器人转向机械手动力学模型,并构建了驾驶机器人转向操纵试验车辆的集成系统动力学模型,接着研究了一种融合路径曲率和车速的驾驶机器人转向操纵自适应曲线预瞄方法,其预瞄点位置能够根据车速和路径曲率做出自适应调整。在此基础上,设计了用于驾驶机器人转向操纵的粒子群优化滑模控制器,并进行了稳定性分析,同时利用粒子群算法在线优化滑模控制切换项的反馈增益系数,以减小控制抖振。仿真及试验结果表明,所提出的方法能够在不同工况下根据路径曲率和车速做出自适应调整,实现驾驶机器人操纵车辆的精确转向控制。  相似文献   

2.
为了增强车辆在外界干扰存下的路径跟随性能,提出了一种基于广义预测控制(GPC)的主动转向控制器来保证车辆对于路径的跟踪能力.采用受控自回归积分滑动平均模型(CARIMA)作为预测模型,通过带遗忘因子的最小二乘法辨识方法获得CARIMA模型参数,避免了由于车辆非线性造成的参数化建模不准确、繁琐问题.使用车辆路径侧向跟踪误差作为控制器输入,方向盘附加转角作为输出,与驾驶员方向盘转角进行综合,获得车辆方向盘最终转角.在Simulink-CarSim联合仿真环境下,验证了所设计控制器在双移线工况有强侧向风干扰时车辆对路径的跟随性能.  相似文献   

3.
考虑驾驶员特性的四轮独立驱动电动汽车转向控制研究   总被引:1,自引:1,他引:0  
四轮独立驱动电动汽车四轮驱动力矩独立可控,在汽车控制方面相对于传统汽车具有显著优势,通过建立驾驶员不同转向特性参考模型和四轮驱动力矩控制进行考虑驾驶员特性的四轮独立驱动电动汽车转向控制研究。基于驾驶模拟器实验,在对驾驶员转向特性进行分类和建立辨识模型的基础上,采用RBF神经网络建立了驾驶员不同转向特性的参考模型,给出了考虑驾驶员转向特性的整车控制原理,应用驾驶模拟器对所研究的控制方法进行了验证。验证结果表明:参考模型输出能够反映不同转向特性驾驶员期望的车辆响应,通过对四轮驱动力矩合理控制实现汽车跟踪驾驶员期望。  相似文献   

4.
为了改善车辆转向轻便性和方向盘的回正能力,开展了利用左右车轮的转矩差实现差动助力转向和回正控制研究。首先利用转向系统模型预测方向盘力矩,根据助力特性曲线计算不同车速下的理想助力矩,由两者获得理想的方向盘力矩。以实测方向盘力矩与理想方向盘力矩的偏差作为控制目标,进而得到差动助力矩。以实现差动助力矩为目标,以横向稳定性为优化目标,基于二次规划方法对车轮驱动转矩进行最优分配,实现差动助力转向控制。最后根据方向盘转角特性,提出了差动助力转向与回正控制的结合方法。基于CarSim和MATLAB的联合仿真,证明提出的控制方法能改善车辆的转向轻便性和方向盘回正能力。  相似文献   

5.
基于对多轴轮式车辆的最小转向半径战技指标的要求,提出了一种适用于多轴机电复合分布式驱动车辆的最小转向半径控制系统,并详细介绍了该模式下的整车控制策略,当车辆以大前轮转角低速转向时,后两桥驱动电机产生“外正内负”的力矩辅助车辆转向从而减小最小转向半径.为验证系统性能,文中建立了包含车体纵向速度、侧向速度、横摆角速度及8个车轮旋转的11自由度整车动力学模型,并采用Gim轮胎模型表达了轮胎的非线性力学特性.虚拟样机仿真的结果表明,在该控制策略下,车辆的最小转向半径可减小10.31%,转向机动性能得到大幅度提高.   相似文献   

6.
基于子空间方法的车辆稳态操纵性模型辨识   总被引:1,自引:0,他引:1  
基于子空间辨识方法,对稳态操纵工况下的车辆动力学模型进行辨识.根据子空间算法的假设条件,构建了3自由度车辆模型,并进行系统的可辨识性论证,确定了相应的辨识模型结构.采用方向盘角阶跃输入转向回正性能试验数据进行车辆模型的辨识.辨识模型的验证采用相同车速下的实车蛇形试验数据,分别在时域和频域进行辨识和试验对比.结果显示,两者基本吻合,子空间算法能够很好地适用于线性车辆操纵动力学模型的辨识.  相似文献   

7.
四轮转向(4WS)车辆相较于前轮转向(FWS)车辆具有更高的灵活性,其后轮转向在提高车辆操稳性的同时转向阻力矩也发生变化,使得原电动助力转向系统助力策略与四轮转向车辆不匹配,对行车安全产生影响.本文以线性二自由度车辆模型为基础,对比分析了前轮转向车辆与四轮转向车辆的转向特性,提出电动助力转向修正控制策略.仿真结果表明,角阶跃工况下,有助力修正的四轮转向车辆,驾驶员操纵方向盘力矩与驾驶前轮转向车辆基本一致,既保证了四轮转向车辆低速时的操纵轻便性,也兼顾了高速时的操纵稳定性.  相似文献   

8.
为了实现装备驾驶机器人车辆的路径及速度跟踪控制,提出了1种基于模糊免疫比例积分微分(PID)的控制方法。通过比较车辆实际行驶路径与期望路径的侧向偏差,模糊免疫比例路径跟踪控制器控制转向机械手操纵方向盘。通过计算期望车速与实际车速的偏差,模糊免疫PID速度跟踪控制器控制制动/油门机械腿分别操纵制动/油门踏板。通过引入车速反馈不断更新汽车的侧向加速度增益,实现了车辆转向控制与纵向车速控制的解耦。Carsim/Simulink软件的联合仿真结果显示,车辆路径跟踪和车速跟踪的最大误差分别为0.28 m和1 km/h。  相似文献   

9.
使用方向盘脉冲输入的实车试验数据,基于预计误差方法对车辆操纵稳定性模型进行了离线辨识.将模型仿真结果与实测数据相比较,通过残差分析,结果表明,模型辨识精度能满足要求,可以用于未来的优化改进和整车控制研究.  相似文献   

10.
为了提高电传动履带车辆的原地转向性能,从履带车辆原地转向动力学模型出发,提出一种基于双电机力矩控制的电传动履带车辆原地转向控制策略,首先增大电机力矩初始值以提高转向响应速度,进而将方向盘转角信号引入横摆角速度负反馈增益从而实现驾驶员对转向速度的控制.使用D2P快速原型开发系统构建了履带车辆原地转向“驾驶员+控制器”在环仿真平台,通过实时仿真对所提出的控制算法进行了验证,结果表明设计的控制策略正确有效,且具有良好的实时性.  相似文献   

11.
为了解决商用车驾驶过程中转向力矩跟踪精度不高,反馈给驾驶员的路感出现偏差与滞后问题,通过选取两轴商用车二自由度车辆模型对Trucksim内置阻力矩的计算进行推导,采用高精度正交编码传感器对方向盘转角进行解析,将解析后的前轮转角通过CAN(controller area network)发送器发送到LabVIEW的CAN接收模块,借助转向系统实验台实现LabVIEW与Trucksim的联合仿真.结果表明,LabVIEW通过控制PXI(PCI extensions for instrumentation)驱动伺服电机产生的模拟地面转向阻力矩能够很精确地跟踪上Trucksim输出的前轮地面转向阻力矩,并且及时反馈给驾驶员适当的路感,为商用车转向系统助力的设计提供依据.  相似文献   

12.
根据电机转速对转向性能的影响,确定电机转速与方向盘转速和车速的对应关系。利用仿真软件AMESim建立电动液压助力转向系统的仿真模型,包括方向盘输入模型、液压机械模型、轮胎模型和电机控制模型。其中设置方向盘输入为力输入和角输入两种输入端口,采用等效节流阀模拟转阀,轮胎与地面的转向阻力使用齿条两端加载等效滑动摩擦力来模拟,电机控制使用转速环、电流环双闭环PID控制方法。通过三种典型工况的仿真,量化分析控制方法对车辆转向性能的影响,包括转向轻便性、路感、助力响应速度以及稳定性,仿真结果验证了控制方法的有效性,并为控制方法的优化提供了依据。  相似文献   

13.
本文设计了基于电动助力的副转向系统。建立了以副转向盘的转角为输入,车辆主转向柱的转角为输出的线性系统模型。设计完成了信号处理电路、电机驱动电路、控制系统反馈电路等。程序设计采用模块化设计的原则,选用PEC7000并应用PLC编写了信号检测程序、采样程序、主、副方向盘信号选择程序以及主控制程序等。对系统进行了试验验证。  相似文献   

14.
为提高电动轮驱动车辆对不同路面的适应能力,基于模型预测控制提出一种将驱动电机的饱和输出力矩作为控制输入约束、将质心侧偏角作为输出约束的汽车横摆控制方法。建立2自由度的车辆状态空间模型作为预测模型,在线计算出跟踪理想横摆角速度所需的附加横摆力矩,通过调节相应驱动轮的驱动力来完成高效、简易的直接横摆力矩分配。将本文算法应用于四轮驱动的8自由度整车模型进行控制仿真,结果表明,该方法能够保证车辆在良好路面及湿滑路面上紧急转向和换道的操作稳定性,并能改善车辆循迹能力。  相似文献   

15.
为提高遥控履带车辆的操纵稳定性,研究了转向控制系统的控制方法.遥控履带车辆的转向控制由转向控制系统执行遥控驾驶指令控制转向拉杆行程予以实现.基于系统输入/输出关系构建了遥控转向操纵闭环系统模型,分析了遥控车辆的转向操纵特性.从人工转向操纵的特点出发,针对遥控信息环节引入的时间滞后,设计了预测和断续转向控制方法.试验证明,转向控制方法能够满足遥控履带车辆的方向控制要求.  相似文献   

16.
对于同时装备主动稳定杆与主动前轮转向的车辆,为了获得最佳控制性能,建立仿真模型研究了双系统的耦合问题.建立非线性车辆动力学模型,并设计了主动转向比例积分微分控制器;基于稳定杆作动器,设计了主动侧倾滑模控制器以及反侧倾力矩前后轴分配模糊控制器;最后设置阶跃转向与双移线机动工况.仿真结果表明,主动转向可以一定程度改善侧倾性能;另一方面,反侧倾力矩分配与主动转向配合可以进一步提高车辆的横摆稳定性能,同时还可以保证侧倾稳定性能.  相似文献   

17.
针对线控转向汽车在紧急转向时,按理想转向传动比控制得到的横摆角速度动态响应慢、超调量大、稳定时间长的问题,提出了一种基于驾驶员转向意图辨识的横摆角速度反馈控制方法.该方法在正常转向时,车辆按照理想转向传动比控制;在紧急转向时,在理想转向传动比控制基础上,叠加横摆角速度反馈控制.车辆紧急转向引入驾驶员转向意图辨识环节,以判定何时叠加横摆角速度反馈控制.转向意图辨识利用多维高斯隐马尔可夫模型建模,通过离线训练参数、在线辨识识别的方式实现.实验验证结果表明:该方法能够有效降低线控汽车瞬态转向响应的超调量、减少稳定时间.  相似文献   

18.
采用二自由度摩托车模型研究四轮转向车辆的转向特性,建立四轮转向车辆线性二自由度动力学模型和方程.着重设计BP神经网络直接逆控制系统,通过离线辨识、在线学习控制被控系统,与其他控制方法对比表明,神经网络直接逆控制系统能够更加有效的控制后轮转角以便使车辆质心侧偏角为零,并提高车辆低速机动性和高速稳定性.  相似文献   

19.
四驱混合动力轿车转弯工况路径跟踪控制   总被引:2,自引:1,他引:1  
针对四驱混合动力轿车,提出一种转弯工况下集成横向与纵向运动控制功能的路径跟踪控制策略.在建立车辆动力学与动力系统模型的基础上,设计了基于轨迹跟踪误差的驾驶员预瞄转向模型;采用模糊控制器确定了期望车速,对转矩分配问题进行优化研究;设计了车速与轨迹跟踪模型预测控制器;搭建了CarSim与MATLAB/Simulink联合仿真模型与自动驾驶模拟驾驶器,对控制策略进行了离线仿真和硬件在环仿真试验.研究结果表明,车辆转弯过程中路径及车速跟踪效果良好,满足转弯工况路径跟踪需求.  相似文献   

20.
分布式电驱动汽车驱动力矩优化控制分配   总被引:2,自引:2,他引:0  
针对分布式电驱动汽车在加速转向行车工况下车轮驱动力矩的控制分配问题,提出一种具有分层结构的控制策略.在控制策略的上层,为提高控制器对参数不确定和模型误差的鲁棒性,基于滑模控制进行主动横摆力矩计算.在控制策略的下层,构建了以提高车辆操纵性、降低电能损失为目标的优化问题,并基于离线计算和在线优化相结合的方式进行求解.采用Matlab-Carsim联合仿真,验证了控制策略在提高车辆操纵性能、降低能耗上的有效性.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号