共查询到20条相似文献,搜索用时 68 毫秒
1.
2.
本文考查了正则排列,经典幻D矩和经典全对角线幻D体三种组合构造的存在性以及它们之间的关系,给出了阶为2~D的整倍数的经典全对角线幻D体的构造方法,证明了存在常数C(D),当n为不小于C(D)的奇数时,存在n阶全对角线幻D体,且当D=2,3,4时,C(D)=2~D+1。 相似文献
3.
4.
5.
周振黎 《重庆大学学报(自然科学版)》1989,(6)
幻体是幻方的推广,它是一类特殊的组合设计。本文对正整数N=6,7,8,9和任意的奇素数T,给出了N维T阶幻体的构造公式。对任意的正整数N和奇素数T,N维T阶幻体的构造公式,也可类似地推出。 相似文献
6.
7.
对于图G(p,q),若存在一个映射f:V(G)∪E(G)→{1,2,…,p+q},使得任意边uv∈E(G),满足f(u)+f(v)+f(uv)=K,K为常数,则图G(p,q)为边幻和图。设计了一种算法对16个点以内的单圈图进行标号,依据得到的结果,找到了两类特殊单圈图的标号规律,定义CnSymbolQC@〓Sm和CnΔSm来刻画此两类特殊单圈图,并给出其相关定理及证明。结果表明,点数小于等于16的所有单圈图均具有边幻和全标号,且其中绝大部分是超级边幻和全标号,从而猜测点数多于16的单圈图也具有边幻和全标号。 相似文献
8.
将“拉丁方”的概念拓广的“拉丁体”在此基础上给出了利用3个拉丁体构造n阶幻方方的一种方法,其中n不被2,3,5整除。 相似文献
9.
图的边幻和全标号是指图中任意边及其两个顶点的标号和为常数,且标号取值一一对应于从1至点边之和的自然数集合.设计了一种递归算法,采用了与目标函数相结合的算法优化策略,实现了对9个点内所有简单连通图的边幻和性判定.结果表明,当p≤9时,所有的树图、单圈图和双圈图都是边幻和全标号图;当点边数值满足一定条件时,发现若干图类是边幻和全标号图或非边幻和全标号图,结合已有结果,猜测当点数超过9时,相关结论也成立.其中,已经证明点数不超过12时的猜测成立. 相似文献
10.
11.
本文给出了二次整数方及其乘积的定义 ,化mn阶全对角线幻方的存在性为m阶和n阶全对角线幻方的存在性 .给出了n =4× 2 k(k≥ 0 )阶的一族全对角线幻方 .再用二次整数方的乘积 ,给出了所有n≠ 2 ,3 ,4t+2 ,9t± 3阶的一族全对角线幻方 .2阶幻方不存在 ,3阶幻方只有一个 ,且不是全对角线幻方 .Mr .Raynor已证明了4t+2阶全对角线幻方不存在 ,因此全对角线幻方的存在性问题已完全解决 相似文献
12.
13.
本文以文[3]中等和性半泛对角线拉丁方为工具,证明4m阶偏差分对称方阵的数集可构成4m阶泛对角线幻方,而相邻自然数集1,2,…,(4m)2仅是构成偏差分对称方阵数集的特例,从而本文连同文[3,4]完成了泛对角线幻方存在时,构成数集的拓广工作. 相似文献
14.
本文提出偏差分均匀矩阵、有心偏差分均匀矩阵、3分偏差分均匀矩阵的概念,证明凡构成2m 1(m≥1)阶有心偏差分均匀方阵的数集,均可构成2m 1阶幻方;构成6m 1(m≥1),6m 5(m≥0)阶偏差分均匀方阵的数集,均可构成相应阶的泛对角线幻方;构成6m 3(m≥1)阶3等分偏差分均匀方阵的数集,均可构成6m 3阶泛对角线幻方,因偏差分对称矩阵是有心偏差分均匀矩阵的特例,因而本文将构成奇数阶幻方、n=6m 1,6m 5阶泛对角线幻方的数集拓广为目前最为广泛的范围;n=6m 3的情况,偏差分对称矩阵与3等分偏差均匀矩阵是交叉概念,而后者受的约束条件较少。 相似文献
15.
16.
17.
伍岳明 《杭州师范学院学报(社会科学版)》1994,(3)
利用八卦的排列顺序,构造出n(=4k)阶泛对角立体幻方,经验证是成立的,并已编成计算机程序,能打印出任意n(=4k)阶泛对角立体幻方. 相似文献
18.
李立 《北京联合大学学报(自然科学版)》1988,(2)
将自然数数列1,2,…,16n按照表二所示,用16个等差数列n阶方阵,构成第2类4n阶全对称幻方。这是一种极快的全对称幻方的构造方法。 相似文献
19.
王开清 《西南民族学院学报(自然科学版)》1997,23(3):243-246
设X是p-一致凸和一致光滑的Banach空间,T:D(T)→X是Lipschitz的m-耗散算子,其中T的定义域D(T)是X的闭真子集,研究了逼近非线性方程x-λTx=f,λ>0解的方法,扩展了几个已知的结果. 相似文献
20.
李立 《内蒙古大学学报(自然科学版)》1988,(2)
前言在文[1]中,作者引入全对称拉丁方的概念,并且用2个正交的6m+3阶全对称拉丁方构成6m+3阶全对称幻方。本文将拉丁方的概念推广到三维,并且用三个正交的8阶三维全对称拉丁方构造8阶最佳幻立方,再用8阶等值最佳幻立方砌块构成8n阶最佳幻立方。本文所得到的6族8阶最佳幻立方,也是目前能构成的最低阶的最佳幻立方。 相似文献