首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
车实时定位是保证列车安全运行的重要环节。随着北斗卫星导航系统的发展,北斗卫星已逐步具备应用于列车定位的能力。针对北斗导航定位系统的特点及存在的问题,将SINS系统作为其补充定位方式。由于传统滤波算法在进行状态估计时仍存在粒子退化现象。为了进一步提高估计性能,提出了基于人工免疫无迹粒子滤波算法(AI-UPF)的列车组合定位方法。将人工免疫算法引入UPF算法的重采样过程,对粒子进行克隆和变异,改善了样本集的多样性,减轻了退化现象的影响。用该方法和UPF算法分别对北斗/SINS列车组合定位系统进行仿真实验。结果表明,AI-UPF算法能进一步减小定位误差,滤波效果较好。  相似文献   

2.
传统电池荷电状态(SOC)估计中常用的扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)方法仅适用于线性系统和高斯条件,虽然粒子滤波(PF)算法能用于非线性和非高斯系统,但PF算法在滤波更新时存在粒子退化现象,使粒子集无法表示实际后验概率分布,导致估计精度降低.采用改进的扩展粒子滤波(EPF)和无迹粒子滤波(UPF)算法对电池SOC进行估计,抑制了粒子权重退化.以Thevenin模型对电池进行建模,利用带遗忘因子的最小二乘方法进行模型参数辨识,结合改进后的滤波算法对电池SOC进行估计.实验结果表明,以UKF为建议密度函数进行重采样的UPF方法平均估计误差为0.71%,低于以EKF为建议密度函数的EPF方法平均误差(1.09%),两种方法的估计误差均小于PF估计误差(1.36%),有效抑制了粒子权重退化.  相似文献   

3.
针对捷联式惯性导航系统(SINS)/全球定位系统(GPS)组合导航系统模型的误差以及粒子滤波(PF)存在的粒子退化问题,结合无迹卡尔曼滤波(UKF)算法,提出一种基于PF-UKF组合滤波的SINS/GPS组合导航系统空中对准方法.由误差四元数代替姿态角,以SINS和GPS的位置差和速度差作为观测量,建立新的组合导航系统误差方程.所提出的PF-UKF组合滤波算法将采样粒子分为随机粒子和确定粒子,其中随机粒子为概率密度函数所采集,确定粒子为UKF中采集Sigma点后所求取的系统状态值.由此降低了PF处理粒子时的复杂程度以及粒子退化的程度.仿真结果表明:相比于UKF算法,该方法有效提高了组合导航系统的精度,具有较好的鲁棒性.  相似文献   

4.
提出了一种采用遗传算法(GA)优化无味粒子滤波(UPF)的新方法遗传无味粒子滤波器(GAUPF).在无味粒子滤波(UPF)获得比传统粒子滤波(PF)算法更好的重要性采样分布函数的基础上将遗传机制应用于粒子重采样,以进化设计思想克服粒子退化现象,通过优化UPF算法更好地解决了非线性、非高斯领域的目标跟踪问题.仿真结果表明,该算法较好地解决了粒子退化问题,提高了滤波的精确性.  相似文献   

5.
针对列车在实际运行过程中,在通视性不良区域难以获得全球定位系统(Global Positioning System,GPS)信号,致使GPS/捷联惯性导航系统(Strapdown Intertial Navigation System,SINS)列车定位系统精度下降的情况,提出一种基于长短时记忆(Long Short Term Memory,LSTM)网络无迹粒子滤波(Unscented Particle Filter,UPF)的定位方法.在GPS信号有效的情况下,使用UPF1进行列车定位,并利用UPF1输出的位置速度信息训练LSTM1;当GPS信号缺失时,引入神经网络监督控制思想,使用训练好的LSTM1代替GPS信号,并将其与SINS输出信息作为反馈控制器UPF2的输入,使用UPF2的输入输出搭建神经网络控制器LSTM2;系统的输出由UPF2和LSTM2的输出共同决定,但随着LSTM2不断逼近系统模型,会取代UPF2决定最终输出结果.仿真结果证明,采用LSTM辅助UPF的方法可以满足列车定位的要求.  相似文献   

6.
为了解决传统单一卫星导航系统存在的可靠性低和定位精度差等问题,在分析单系统导航定位原理及GPS/BDS组合导航定位解算的基础上,引入标准粒子滤波(PF)算法和高斯粒子滤波(GHPF)算法对组合系统进行定位解算,并对不同滤波算法做出了比较和分析。仿真结果表明,粒子滤波的滤波效果优于扩展卡尔曼滤波算法。  相似文献   

7.
基于分布式无味边缘粒子滤波的同步定位与地图构建   总被引:1,自引:0,他引:1  
针对复杂环境下同步定位与地图构建(SLAM)中分布式粒子滤波算法存在计算量大、粒子退化严重的问题,在分布式算法的基础上结合无味粒子滤波和边缘化算法,提出了一种基于分布式无味边缘粒子滤波的算法.该算法依据分布式思想将系统分解为多个仅包含部分状态量的子系统,各子系统均采用无味粒子滤波算法进行状态估计,通过边缘化算法优化无味粒子滤波算法的边缘分布函数,主滤波器融合各子滤波器的数据计算最终结果,克服了滤波精度低、计算复杂度高的问题.最后,通过仿真试验证明改进的分布式边缘粒子滤波算法能够抑制粒子退化现象,具有较好的实时性和滤波精度,是解决SLAM的新的有效方法.  相似文献   

8.
基于UPF算法的车辆GPS/DR组合导航研究   总被引:1,自引:1,他引:0  
李桂芳 《科学技术与工程》2012,12(31):8143-8146
车辆GPS/DR组合导航系统是非线性系统。采用扩展卡尔曼滤波(EKF)对其进行状态估计时,系统线性化过程将导致较大的滤波误差。为了获得更好的估计性能,将一类改进的粒子滤波方法 (UPF),即以无位卡尔曼滤波(UKF)为建议密度的粒子滤波方法(PF)应用于车辆GPS/DR组合导航系统中,避免了EKF方法的线性化近似过程,提高载体的定位精度。为验证该方法的有效性,将其与EKF分别用于GPS/DR组合导航系统的滤波仿真。仿真结果表明:UPF能减小导航定位误差,滤波性能明显优于EKF。  相似文献   

9.
针对单通道盲源分离重采样过程中出现的粒子枯竭现象,提出了一种基于人工免疫重采样粒子滤波的新算法.以二进制相移键控调制信号为例,针对传统粒子滤波算法中存在的粒子枯竭现象,利用人工免疫重采样粒子滤波进行信号未知参数和码元的最大后验概率估计,在保证粒子有效性的同时解决了粒子退化问题,有效地缓解了粒子枯竭现象,提高了算法的跟踪估计能力.仿真结果证明了该算法的可行性和有效性,改进后的算法在不加纠错编码,信噪比大于14 dB的情况下,误码率小于10-2,基本实现了信号的盲源分离.  相似文献   

10.
为了解决粒子滤波中的退化现象,结合深组合对实时性的考虑,采用再采样方法,并在此基础上,利用遗传算法在选择继承性上的明显优势来弥补再采样的权值退化和多样性问题,同时引入自适应算子和并行处理方法对遗传算法的实时性进行优化.把遗传算法辅助下的粒子滤波在GPS/SINS深组合的模型上进行应用,并通过仿真与PF(particle...  相似文献   

11.
针对弱观测噪声环境下的粒子退化现象,特别是观测噪声较小时非线性非高斯的粒子滤波问题,提出了一种基于均值迁移的粒子滤波算法。首先,将核密度估计的无参快速模式匹配算法引入到粒子滤波中,并迭代计算概率密度估计。然后,利用均值迁移估计粒子梯度的方向,计算每个粒子移向其样本的均值。当粒子位置发生改变时,对重采样粒子进行加权处理。最后,根据本算法采样更新粒子集,有效地克服了粒子退化现象并提高了状态估计精度。  相似文献   

12.
基于北斗卫星的车辆组合导航系统开发   总被引:1,自引:0,他引:1  
针对北斗卫星定位系统的特点,使用电子罗盘、陀螺传感器和车速传感器等多种传感器,基于嵌入式系统平台开发了一种车辆组合定位系统.以Kalman滤波算法为基础,设计了航向融合和航位融合算法,实现了车辆位置和行车方向的测量.为更精确地实现车辆在地图上的定位,设计了一种基于匹配度的综合地图匹配方法,可实现北斗系统的稳定可靠定位.实车定位试验表明: 该组合导航系统可以较好地实现稳定的工作,提高了北斗定位系统的实用性.  相似文献   

13.
针对使用现有粒子滤波算法对非线性/非高斯离散时间系统的状态估计精度较低的问题,提出了一种新的粒子滤波算法——容积粒子滤波(CPF)算法.新算法使用容积数值积分原则直接计算非线性随机函数的均值和方差,产生粒子滤波算法的建议性密度函数,获得所需要的带权粒子,进而通过计算粒子均值,获得系统状态的最小均方误差估计.CPF算法由于产生粒子时使用了最新的测量信息,因而提高了对系统状态后验概率的逼近程度.仿真实验结果表明,CPF算法的估计误差约是标准粒子滤波算法和扩展粒子滤波算法误差的1/5和1/3,是无味粒子滤波(UPF)算法的估计误差的1/2,且运行时间只有UPF算法的1/3.  相似文献   

14.
针对粒子滤波算法中的粒子退化及重采样所引起的粒子多样性减弱问题,将粒子群优化思想融合到粒子滤波的采样阶段,提出了一种改进的基于粒子群优化的粒子滤波算法.本项工作的特色主要表现在如下相互联系的两个方面:第一,在采样前,首先取上一时刻重采样前权重最大的粒子状态作为最优值,然后根据改进算法的粒子移动策略,将上一时刻重采样后的粒子移向最优值周围的高似然区域,从而能够增加粒子的多样性和有效性,有效避免了粒子的退化;第二,构造了改进算法的建议分布,并从理论的角度证明了该建议分布的可计算性.实验结果表明,从精度和时间这两个方面的综合考虑,改进算法要优于UPF等算法,对非线性系统突变具有更强的适应性.  相似文献   

15.
针对自主水下航行器(autonomous underwater vehicle, AUV)导航定位技术的发展需求,提出了水下目标的3种非线性滤波估计方法.首先,分别介绍了扩展卡尔曼滤波(extended Kalman filter, EKF)、无迹卡尔曼滤波(unscented Kalman filter, UKF)和粒子滤波(particle filter, PF)的基本原理和实现步骤.其次,针对PF算法存在粒子退化现象,提出了重采样算法,并通过数值仿真验证该算法的有效性.然后,为了解决PF算法中粒子贫化现象,提出了一种基于萤火虫算法的粒子滤波算法(FA-PF).最后,在非线性环境下通过仿真实验对EKF、UKF、FA-PF算法的滤波性能进行对比分析,重点研究非线性强度及噪声特性对估计精度的影响.研究结果表明:重采样能够在一定程度上减轻粒子退化问题.在弱非线性高斯环境下,EKF、UKF、FA-PF算法的估计精度较为接近;在强非线性高斯环境下,UKF和FA-PF算法的跟踪性能明显优于EKF;在非线性非高斯环境下,FA-PF算法跟踪精度最高.  相似文献   

16.
对粒子滤波算法中建议分布函数的设计提出了一种新的方法,即将迭代无迹卡尔曼滤波(Iterated Unscented Kalman Filtering,IUKF)与Rauch-Tung-Striebel(RTS)平滑算法融合,产生新的建议分布函数,以减小粒子滤波的粒子数匮乏现象,与单独使用无迹卡尔曼滤波产生建议分布函数的粒子滤波方法(Unscented Kalman Particle Filtering,UPF)相比,状态的估计结果更加准确,系统具有更好的稳定性。最后通过仿真研究验证了该方法的有效性。  相似文献   

17.
针对常用汽车状态估计算法计算复杂、精度低等问题,提出一种新的汽车多状态量估计方法。建立了包含定常统计特性噪声和Pacejka轮胎模型的七自由度非线性汽车动力学模型。针对一般粒子滤波(PF)算法存在的缺陷,使用非追踪卡尔曼滤波(UKF)算法产生粒子滤波的重要性概率密度。基于非追踪粒子滤波(UPF)算法实现对汽车多个关键状态量的最小均方误差估计。将基于UPF算法、UKF算法与PF算法的估计器进行了比较,揭示了粒子数对汽车状态估计效果的影响。基于ADAMS/Car的虚拟实验和实车实验表明基于UPF算法的估计器精度高于基于UKF算法的估计器,估计值相对于实际值的平均绝对误差均控制在状态幅值的10%以内,且实时性优于基于PF算法的估计器。  相似文献   

18.
针对基于高斯滤波的重要性采样方法运算量的明显增加主要集中在使用高斯滤波生成更好的重要性密度函数的问题,提出了一种新的高斯衍生粒子滤波算法(GDPF).该算法将一种类似光子衍射的粒子衍生重要性采样方法与现有的高斯辅助粒子滤波算法(GAPF)相结合,通过粒子的扩张与收缩,在保证不减少参与状态估计的粒子数的条件下减少更新粒子数,根据粒子权值大小自适应地调整衍生粒子数,能很好地缓解精度与运算量之间的矛盾,抑制粒子退化等问题.对衍生粒子进行理论分析,证明了其与高斯采样粒子的等效性.仿真结果表明,当选取了相同的参与状态估计的粒子数时,所提算法保持了与原算法相当的估计精度,同时运算量大大降低.  相似文献   

19.
一种强背景噪声下的WSN目标定位算法   总被引:1,自引:1,他引:0  
为了进一步提高无线传感器网络(WSN)目标定位解算精度,提出了一种改进的Cubature粒子滤波(ICPF)定位算法.该算法运用最小二乘法估计移动目标当前初始时刻的位置,使用Cubature卡尔曼滤波和Gauss-Newton迭代法来充分利用测量更新后的状态最新信息,精确设计目标状态重要性密度函数,为粒子滤波提供相应的建议分布,从而能够更加有效改善粒子滤波器的性能.仿真实验结果证明,提出的改进算法在强背景噪声下能有效提高定位精度且收敛性增强,其性能优于标准粒子滤波(PF)、扩展粒子滤波(EPF)及Unscented粒子滤波定位算法(UPF).   相似文献   

20.
粒子滤波算法本身存在着粒子退化问题,对于衰减趋势变化剧烈的模型,难以获得精确的预测结果,限制了算法的适用范围。针对以上问题对粒子滤波进行改进,通过引入粒子群优化算法中的粒子更新机制,优化粒子的全局位置信息,进而重新分配各粒子权重,降低了重采样阶段粒子重置的比例,改善了算法固有的粒子退化现象,达到改进算法、提升算法预测性能的目的;同时,为验证算法的实际效果,以马里兰大学先进寿命周期工程中心(CALCE)发布的锂电池容量实验数据集为基础,分别使用传统粒子滤波算法与改进的算法进行剩余寿命预测仿真。经过对比发现:改进算法误差下降33.6%,可获得更为精确的预测结果,重采样率下降18.3%,粒子退化问题得到改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号