首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
为改善列车底部流场结构,进一步减低高速列车的气动阻力,基于底部导流的思想,设计了一种列车底部转向架舱前后位置布置、截面为三角形的导流板并开展其气动减阻特性研究.以300 km/h的速度明线运行的三车编组CRH380B型高速列车为研究对象,采用Realizable k-ε湍流模型,对4种典型的导流板安装位置进行探讨,并选择减阻效果最好的导流板安装位置,分别探究了5种角度和5种高度的不同组合下的导流板减阻特性差异,对比了安装导流板前后车体、转向架以及转向架舱上的阻力变化情况、压力分布变化情况以及转向架区域的流场结构变化情况.结果表明:仅在各转向架舱前双向开行的来流方向安装导流板时的减阻效果最佳;安装导流板后,车体、转向架舱上的气动阻力虽有所增加,但转向架上的阻力明显减少,转向架区域流速降低,前后压差减小,底部流场显著改善.同时发现,15°、100 mm组合的导流板减阻效果最佳,三车减阻率达7.08%.数值仿真证明了底部导流板能有效减小列车运行阻力.  相似文献   

2.
为了研究非光滑表面尺寸及组合布置位置对汽车气动性能的影响.以MIRA阶梯背模型为研究对象,采用CFD与风洞试验相结合的方法对3种不同位置组合模型的气动性能进行了研究,并与光滑表面模型进行对比分析,探讨其减阻机理.结果表明,行李舱盖,车身尾部和车身底部组合布置非光滑单元体减阻效果最佳,减阻率为5.90%.非光滑表面通过改善汽车的尾部涡流,降低了模型压差阻力;同时通过改变近壁面气流的流动状态,降低了车身表面的气流速度,减小车身的摩擦阻力.  相似文献   

3.
为了研究侧风状态对重型卡车气动性能的影响,建立计算流体动力学模型研究不同横摆角下卡车外流场的变化,随后提出添加横向和纵向隔板作为减阻导流装置,分析两种结构对卡车气动特性的影响,并通过1∶7.5卡车比例模型的风洞试验验证数值仿真模型的有效性。结果表明:侧风状态下重型卡车的风阻、侧向力和升力系数均随横摆角的增大而增大;在货箱前部添加横向或纵向隔板能够切断货箱前方间隙内流体的连续性,能不同程度地降低侧风状态下卡车的风阻系数。与添加纵向隔板相比,添加横向隔板的减阻效果更加明显,横摆角为12°时相对于原车模型的风阻系数下降率可达19.6%。但两种结构对侧向力系数和升力系数的影响很小,说明两种减阻结构在提升燃油经济性的同时,也可保证行车安全性。  相似文献   

4.
使用DrivAer汽车模型来研究仿生非光滑车外后视镜罩减阻降噪机理.风洞试验验证了LES(Large Eddy Simulation)和k-ε仿真模型的有效性,说明车外后视镜会导致空气阻力和空气噪声增加.在DrivAer汽车模型外后视镜罩造型表面应用仿生非光滑结构,仿真结果表明:车外后视镜上应用仿生非光滑结构,使整车阻力降低5.9%,侧窗外响度降低19.4%;仿生非光滑结构通过改变边界层流动状态,促使涡垫效应形成,减少来流能量损失,提高流场稳定性,进而对整车气动阻力和噪声产生积极的影响.  相似文献   

5.
以SAE(美国机动车工程师学会)模型为研究对象,采用计算流体力学数值模拟方法研究非光滑表面布置位置对车身气动性能的影响.通过对钝体模型的不同位置(侧部、底部、顶部、尾部)布置凹坑型非光滑表面,计算钝体模型的空气阻力系数,比较光滑表面与非光滑表面速度矢量、压力以及湍动能,分析了非光滑表面气动减阻机理和减阻效果差异的原因,根据分析结果得到在模型的侧部、顶部、尾部和底部布置非光滑表面均能起到减阻作用,尾部非光滑表面的减阻效果最明显,减阻率达到5.73%.  相似文献   

6.
在25°Ahmed汽车模型尾部斜面上端布置介质阻挡放电(DBD)等离子体激励器,通过风洞试验,研究了激励器频率为9 k Hz时不同激励电压对模型气动阻力系数的影响、10~25 m/s风速下的最大减阻率和此时对应的最佳激励电压. PIV测得的流场图以及PSI压力扫描系统测得的模型尾部斜面的压力值显示,在DBD开启时,激励器周围及尾部斜面近壁面区域流速提高,尾部分离区减小,尾部斜面上测压点处的压力升高;根据天平传感器测量结果,试验风速为15 m/s时获得最大减阻率,为7. 28%,对应的最佳激励电压为18. 5 k V. DBD激励器通过降低模型的压差阻力起到减阻效果.随着激励电压的提高,气动阻力系数呈现先下降后趋于平稳的趋势,且存在一个最佳激励电压;随着风速的增加,需要更高的激励强度才能起到较好的减阻效果.  相似文献   

7.
徐明  叶佳  朱茂桃 《科学技术与工程》2022,22(17):7174-7182
为探究外后视镜内侧夹角对气动噪声的影响,使用某运动型多用途汽车(sport utility vehicle, SUV)车型进行研究,对后视镜内侧夹角进行等角度参数化设计,采用Realizable k-ε和基于WMLES亚格子应力模型的大涡模拟(large eddy simulation, LES)进行气动噪声数值计算,通过风洞试验验证了仿真计算结果的正确性。通过对比前侧窗表面的平均声压级,得出最佳夹角优化方案。对原模型和最优夹角方案的流场分布云图和声压级频谱曲线进行分析,结果表明:与原模型相比,后视镜内侧夹角为5°时,后视镜尾部流场得到较好的改善,涡流强度较小,有利于降低后视镜气动噪声,最大降幅为6.8 dB。  相似文献   

8.
针对货车气动阻力较高问题,研究了尾部上翘角对货车减阻效果的影响.货车采用简化的Ahmed模型,运用SSTk-ω湍流模型进行CFD模拟,针对不同尾部上翘角对货车外流场的影响因素进行了研究,包括气动阻力系数、表面压力系数及尾部涡结构等.研究结果表明,通过采用尾部上翘角能够减小货车尾部分离区强度,从而降低阻力.尾部上翘角在10°时阻力系数达到最小,减小阻力系数约6%.  相似文献   

9.
为了优化某厢式货车的气动阻力系数,设计了驾驶室前部仿生减阻结构、顶部和侧部涡流发生器、底部涡流发生器等3种气动减阻装置。研究了3种单一气动减阻装置主要相关参数对气动阻力的影响,分别从货车外流场的速度轨迹、压力分布和湍动能分布等3方面详细分析了各单一气动减阻装置的减阻效果。在此基础上采用正交试验法对3种气动减阻装置的主要参数进行优化,获得最优减阻货车模型。研究表明:驾驶室前部突出部分的长度对货车整车气动阻力系数的影响比倾角更大;最优货车头部形状的倾角和长度分别为135°和300 mm,该模型的气动阻力系数为0.721 4,相对于货车原始模型的减阻率为8.93%;涡流发生器的高度和位置对货车的减阻效果均有较大的影响;涡流发生器可以增加货车尾部分离区流场的能量,使得尾涡区减小,气动压差阻力减小;3种气动减阻装置对货车气动阻力系数的影响大小依次为:底部涡流发生器、货车前部仿生减阻结构、顶部和侧部涡流发生器,其最优厢式货车模型的空气阻力系数为0.683 3,其复合减阻装置的最佳减阻率为13.8%。  相似文献   

10.
为了充分了解和掌握在强侧风作用下受电弓设备(受电弓和导流罩)对高速列车气动性能的影响,通过风洞试验对强侧风下高速列车运行时的气动性能进行测量和分析.实验结果表明:当侧滑角小于15°时,列车模型阻力系数随着侧滑角的增大而增加,当侧滑角为15°时,阻力系数出现拐点,拐点后阻力系数开始下降,其侧向力系数的绝对值和升力系数随着侧滑角的增大而增加;受电弓设备对头车的影响较小,但可使中车侧向力系数的绝对值及阻力系数明显增加,使尾车的阻力系数明显减小,而侧向力系数明显增加;受电弓设备中“浴盆”式导流罩对高速列车阻力系数的影响强于“挡板”式导流罩的影响,但对升力系数及侧向力系数的影响弱于“挡板”式导流罩的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号