首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
设(X, d,μ)是一个满足上双倍条件和几何双倍条件的非齐度量测度空间,利用非齐度量测度空间的性质,借助于奇异积分算子有界性理论,基于非齐度量测度空间上Herz空间的刻画以及Herz型Hardy空间的原子分解和分子分解,证明了Calderón-Zygmund算子与Lipschitz函数生成的交换子在非齐度量测度空间上Herz型空间的有界性.  相似文献   

2.
设(X,d,μ)是一个满足上双倍条件和几何双倍条件的非齐度量测度空间.利用非齐度量测度空间的性质和不等式技巧,借助Marcinkiewicz积分算子在Lp空间上的有界性理论,得到Marcinkiewicz积分算子及其与RBMO(μ)函数,Lipschitz函数生成的交换子在非齐度量测度Morrey空间上的有界性.  相似文献   

3.
在一个满足上双倍条件和几何双倍条件的非齐度量测度空间上,利用非齐度量测度空间上Herz型Hardy空间的原子刻画,借助于Calderón-Zygmund算子在Lp空间上的有界性理论,在非齐度量测度空间上证明了Calderón-Zygmund算子与Campanato空间中函数生成的交换子从Herz型Hardy空间到Herz空间的有界性.  相似文献   

4.
主要讨论了Calderón-Zygmund奇异积分与RBMO(μ)交换子在Morrey空是上的有界性,此处μ是一个不满足双倍条件的Borel测度.  相似文献   

5.
设(X,d,μ)是一个满足上双倍条件和几何双倍条件的非齐度量测度空间, 对一类非齐度量测度空间上的Morrey-Herz空间, 利用非齐度量测度空间的性质, 并借助奇异积分算子在Lp空间上的有界性理论, 证明Marcinkiewicz积分算子及其与RBMO函数生成的交换子在非齐度量测度Morrey-Herz空间上的有界性.  相似文献   

6.
证明了由Calderón-Zygmund算子或分数次积分算子与RBMO(μ)函数以及Lipschitz函数生成的交换子在非齐型空间上的Morrey空间中的有界性.  相似文献   

7.
利用加权Hardy空间原子分解理论, 研究广义Calderón-Zygmund算子与Lipschitz函数生成的交换子在一类加权Hardy型空间上的有界性. 证明了交换子是从Hp(ω)到Lqq/p)有界的及从Hpb(ω)到Lqq/p)有界的.  相似文献   

8.
本文引入非齐型空间上的Herz空间,并证明了多线性Calderon-Zygmund算子及其交换子在这些空间上的有界性.  相似文献   

9.
利用非齐度量测度空间的性质与奇异积分算子有界性理论,证明了Calderón-Zygmund算子和广义分数次积分算子与Lipschitz函数生成的交换子在非齐度量测度空间上Morrey-Herz型空间的有界性.  相似文献   

10.
设M是极大函数算子,[b,M](f)(x)=b(x)Mf(x)-M(bf)(x)是其交换子.设Cb为极大交换子.文章研究了极大函数的交换子[b,M]和极大交换子Cb在齐型空间上的加权Morrey空间上的有界性.此外,还得到了极大交换子Cb的下界估计.  相似文献   

11.
应用Morrey-Herz空间和RBMO(μ)函数的特征,并利用非双倍测度下方体系数KQ,R的性质,得到了非双倍测度下Hardy-Littlewood分数次极大算子交换子在Morrey-Herz空间上的有界性.  相似文献   

12.
讨论了非齐型空间中一类由次线性算子与Lipschitz函数生成的交换子在Herz空间上的有界性,证明了交换子从K q1α,p1(μ)到K q2α,p2(μ)有界,且从K q1n(1-1/q1),p1(μ)到WK q2n(1-1/q1),p2(μ)有界,并相应地得到了分数次积分算子交换子的有界性.  相似文献   

13.
讨论了非齐型空间中一类由次线性算子与Lipschitz函数生成的交换子在Herz空间上的有界性,证明了交换子从K q1α,p1(μ)到K q2α,p2(μ)有界,且从K q1n(1-1/q1),p1(μ)到WK q2n(1-1/q1),p2(μ)有界,并相应地得到了分数次积分算子交换子的有界性.  相似文献   

14.
利用Hardy-Lorentz空间的原子分解,借助于L^q有界性的结论,使用不等式估计,证明了Littlewood—Paley算子交换子从Hardy—Lorentz空间到弱空间L^p,∞(R^n)的有界性。此结果补充了Littlewood—Paley算子交换子有界性理论。  相似文献   

15.
设ωi(x,r)(i=1,2)是R^n×R^+上的可测正函数,定义双(次)线性算子M2和T,证明了当(ω1,ω2)∈S0,n时,算子M2与T以及它们与BMO函数所生成的交换子在广义Morrey空间L^p1,ω1(R^n)×L^p2,ω2(R^n)到L^p,ω(R^n)上都是有界的.对于双线性算子T与Lipschitz函数组成的交换子,也得到了类似的有界性结论.这些结论推广了叶晓峰在广义Morrey空间上对几类交换子的估计.  相似文献   

16.
借助于粗糙核抛物型奇异积分算子 Tf(x)=p.v.∫R^nΩ(y)/ρ(y)^αf(x-y)dy 的L^p有界性得到了当核函数Ω满足一类Lipschitz条件时,T在广义Morrey空间上的有界性结果.作为对上述结果的应用,当Ω满足一类L^p-Dini条件,b(x)为BMO函数时,我们也证明了粗糙核抛物型奇异积分高阶交换子 [b,T]^m(f)(x)=p.v.∫R^nΩ(x-y)/ρ(x-y)^α[b(x)-b(y)]^mf(y)dy 在广义Morrey空间上是有界的.  相似文献   

17.
本文证明了非齐型空间上的分数次积分算子和RBMO(μ)函数生成的交换子在Morrey-Herz空间中的有界性。  相似文献   

18.
借助Lp空间上的估计,利用Ap权不等式和函数分解方法,给出多线性奇异积分和有界平均振荡(BMO)函数交换子的振荡及变分算子在加权Morrey空间上的有界性.  相似文献   

19.
证明了带变量核的分数次积分算子T_(Ω,μ)与Lipschitz函数b生成的高阶交换子[b~m,T_(Ω,μ)]在变指数Herz-Morrey空间MK_(q,p)~(α,λ)(·)(R~n)上的有界性.  相似文献   

20.
在本文中,我们主要证明了变指数空间上与Schr(o)dinger算子相关的Marcinkiewicz积分算子交换子的有界性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号