首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
《矿物冶金与材料学报》2021,28(12):2001-2007
Graphene oxide (GO) wrapped Fe3O4 nanoparticles (NPs) were prepared by coating the Fe3O4 NPs with a SiO2 layer, and then modifying by amino groups, which interact with the GO nanosheets to form covalent bonding. The SiO2 coating layer plays a key role in integrating the magnetic nanoparticles with the GO nanosheets. The effect of the amount of SiO2 on the morphology, structure, adsorption, and regenerability of the composites was studied in detail. An appropriate SiO2 layer can effectively induce the GO nanosheets to completely wrap the Fe3O4 NPs, forming a core-shell Fe3O4@SiO2@GO composite where Fe3O4@SiO2 NPs are firmly encapsulated by GO nanosheets. The optimized Fe3O4@SiO2@GO sample exhibits a high saturated adsorption capacity of 253 mg·g?1 Pb(II) cations from wastewater, and the adsorption process is well fitted by Langmuir adsorption model. Notably, the composite displays excellent regeneration, maintaining a ~90% adsorption capacity for five cycles, while other samples decrease their adsorption capacity rapidly. This work provides a theoretical guidance to improve the regeneration of the GO-based adsorbents.  相似文献   

2.
《矿物冶金与材料学报》2021,28(12):1908-1916
The effect of CaCO3, Na2CO3, and CaF2 on the reduction roasting and magnetic separation of high-phosphorus iron ore containing phosphorus in the form of Fe3PO7 and apatite was investigated. The results revealed that Na2CO3 had the most significant effect on iron recovery and dephosphorization, followed by CaCO3, the effect of CaF2 was negligible. The mechanisms of CaCO3, Na2CO3, and CaF2 were investigated using X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectrometry (SEM–EDS). Without additives, Fe3PO7 was reduced to elemental phosphorus and formed an iron–phosphorus alloy with metallic iron. The addition of CaCO3 reacted with Fe3PO7 to generate an enormous amount of Ca3(PO4)2 and promoted the reduction of iron oxides. However, the growth of iron particles was inhibited. With the addition of Na2CO3, the phosphorus in Fe3PO7 migrated to nepheline and Na2CO3 improved the reduction of iron oxides and growth of iron particles. Therefore, the recovery of iron and the separation of iron and phosphorus were the best. In contrast, CaF2 reacted with Fe3PO7 to form fine Ca3(PO4)2 particles scattered around the iron particles, making the separation of iron and phosphorus difficult.  相似文献   

3.
4.
Carbonated decomposition of hydrogarnet is one of the vital reactions of the calcification–carbonation method, which is designed to dispose of low-grade bauxite and Bayer red mud and is a novel eco-friendly method. In this study, the effect of the silica saturation coefficient (x) on the carbonation of hydrogarnet was investigated from the kinetic perspective. The results indicated that the carbonation of hydrogarnets with different x values (x = 0.27, 0.36, 0.70, and 0.73) underwent two stages with significantly different rates, and the kinetic mechanisms of the two stages can be described by the kinetic functions R3 and D3. The apparent activation energies at Stages 1 and 2 were 41.96–81.64 and 14.80–34.84 kJ/mol, respectively. Moreover, the corresponding limiting steps of the two stages were interfacial chemical reaction and diffusion.  相似文献   

5.
《矿物冶金与材料学报》2020,27(10):1347-1352
A new method of high-gravity combustion synthesis (HGCS) followed by post-treatment (PT) is reported for preparing high-performance high-entropy alloys (HEAs), Cr0.9FeNi2.5V0.2Al0.5 alloy, whereby cheap thermite powder is used as the raw material. In this process, the HEA melt and the ceramic melt are rapidly formed by a strong exothermic combustion synthesis reaction and completely separated under a high-gravity field. Then, the master alloy is obtained after cooling. Subsequently, the master alloy is sequentially subjected to conventional vacuum arc melting (VAM), homogenization treatment, cold rolling, and annealing treatment to realize a tensile strength, yield strength, and elongation of 1250 MPa, 1075 MPa, and 2.9%, respectively. The present method is increasingly attractive due to its low cost of raw materials and the intermediate product obtained without high-temperature heating. Based on the calculation of phase separation kinetics in the high-temperature melt, it is expected that the final alloys with high performance can be prepared directly across master alloys with higher high-gravity coefficients.  相似文献   

6.
We report the picosecond laser ablation of aluminum targets immersed in a polar organic liquid (chloroform, CHCl3) with ~2 ps laser pulses at an input energy of ~350 μJ. The synthesized aluminum nanoparticles exhibited a surface plasmon resonance peak at ~340 nm. Scanning electron microscopy images of Al nanoparticles demonstrated the spherical morphology with an average size of (27 ± 3.6) nm. The formation of smaller spherical Al nanoparticles and the diminished growth could be from the formation of electric double layers on the Al nanoparticles. In addition to spherical aluminum nanoparticles, triangular/pentagonal/hexagonal nanoparticles were also observed in the colloidal solution. Field emission scanning electron microscopy images of ablated Al targets demonstrated laser induced periodic surface structures (LIPSSs), which were the high spatial frequency LIPSSs (HSF-LIPSSs) since their grating period was ~280 nm. Additionally, coarse structures with a period of ~700 nm were observed.  相似文献   

7.
Computational simulations and high-temperature measurements of velocities near the surface of a mold were carried out by using the rod deflection method to study the effects of various operating parameters on the flow field in slab continuous casting (CC) molds with narrow widths for the production of automobile exposed panels. Reasonable agreement between the calculated results and measured subsurface velocities of liquid steel was obtained under different operating parameters of the CC process. The simulation results reveal that the flow field in the horizontal plane located 50 mm from the meniscus can be used as the characteristic flow field to optimize the flow field of molten steel in the mold. Increases in casting speed can increase the subsurface velocity of molten steel and shift the position of the vortex core downward in the downward circulation zone. The flow field of liquid steel in a 1040 mm-wide slab CC mold can be improved by an Ar gas flow rate of 7 L·min?1 and casting speed of 1.7 m·min?1. Under the present experimental conditions, the double-roll flow pattern is generally stable at a submerged entry nozzle immersion depth of 170 mm.  相似文献   

8.
Electroslag remelting (ESR) gives a combination of liquid metal refining and solidification structure control. One of the typical aspects of liquid metal refining during ESR for the advanced steel and alloy production is desulfurization. It involves two patterns, i.e., slag–metal reaction and gas–slag reaction (gasifying desulfurization). In this paper, the advances in desulfurization practices of ESR are reviewed. The effects of processing parameters, including the initial sulfur level of consumable electrode, remelting atmosphere, deoxidation schemes of ESR, slag composition, melting rate, and electrical parameters on the desulfurization in ESR are assessed. The interrelation between desulfurization and sulfide inclusion evolution during ESR is discussed, and advancements in the production of sulfur-bearing steel at a high-sulfur level during ESR are described. The remaining challenges for future work are also proposed.  相似文献   

9.
The mineral transition and formation mechanism of calcium aluminate compounds in CaO?Al2O3?Na2O system during the high-temperature sintering process were systematically investigated using DSC?TG, XRD, SEM?EDS, FTIR, and Raman spectra, and the crystal structure of Na4Ca3(AlO2)10 was also simulated by Material Studio software. The results indicated that the minerals formed during the sintering process included Na4Ca3(AlO2)10, CaO·Al2O3, and 12CaO·7Al2O3, and the content of Na4Ca3(AlO2)10 could reach 92wt% when sintered at 1200°C for 30 min. The main formation stage of Na4Ca3(AlO2)10 occurred at temperatures from 970 to 1100°C, and the content could reach 82wt% when the reaction temperature increased to 1100°C. The crystal system of Na4Ca3(AlO2)10 was tetragonal, and the cells preferred to grow along crystal planes (110) and (210). The formation of Na4Ca3(AlO2)10 was an exothermic reaction that followed a secondary reaction model, and its activation energy was 223.97 kJ/mol.  相似文献   

10.
Ore particles, especially fine interlayers, commonly segregate in heap stacking, leading to undesirable flow paths and changeable flow velocity fields of packed beds. Computed tomography (CT), COMSOL Multiphysics, and MATLAB were utilized to quantify pore structures and visualize flow behavior inside packed beds with segregated fine interlayers. The formation of fine interlayers was accompanied with the segregation of particles in packed beds. Fine particles reached the upper position of the packed beds during stacking. CT revealed that the average porosity of fine interlayers (24.21%) was significantly lower than that of the heap packed by coarse ores (37.42%), which directly affected the formation of flow paths. Specifically, the potential flow paths in the internal regions of fine interlayers were undeveloped. Fluid flowed and bypassed the fine interlayers and along the sides of the packed beds. Flow velocity also indicated that the flow paths easily gathered in the pore throat where flow velocity (1.8 × 10?5 m/s) suddenly increased. Fluid stagnant regions with a flow velocity lower than 0.2 × 10?5 m/s appeared in flow paths with a large diameter.  相似文献   

11.
水平式隧穿磁强计是一种新型隧穿磁强计,其特点是:反映磁场变化的Loren tz力与敏感元件在同一水平面内。对已加工的这种磁强计表头进行了性能实验。实验内容包括:通过隧道电流和驱动电压的测试实验来验证该表头是一种符合隧道效应的传感器;通过隧道电流和线圈电流的测试实验来验证该表头具有磁强计的基本功能。测试结果表明:这种磁强计符合隧道效应并能够敏感磁场信号。  相似文献   

12.
Calibration of magnetometer is an essential part to obtain high measurement precision.However,the existing calibration methods are basically the calibration of all attitudes,which means tough work when the magnetometer is applied in strapdown inertial navigation system(SINS).So a quick,easy and effective calibration algorithm is developed based on the ellipsoid constraint to calibrate magnetometers.In this paper,the measuring principle and error characteristic of the magnetometer are analysed to study its magnetic interference.During the process,a magnetometer calibration model is set up to convert the calibration to ellipsoid fitting based on the characteristic of hard magnetic interference and soft magnetic interference.Then the algorithm is tested by mimic experiment.The result shows that measurement precision is improved after the calibration,and then the magnetometer is installed in a control cabin of an underwater robot which is designed and developed by us,and actual magnetometer calibration experiments are conducted to further verify the validity of the algorithm.  相似文献   

13.
为评价OVERHAUSER 磁力仪的综合性能, 同时为质子磁力仪的研发提供理论指导, 研究了灵敏度在时域和频域的表征方法, 并在理论上证明了两种表征方法本质上的一致性; 分析了采样率对灵敏度的影响; 设计实验标定了JPM鄄2 型质子磁力仪的灵敏度。实验结果表明, JPM鄄2 型质子磁力仪灵敏度时域表征为0. 18 nT,频域表征为0. 32 nT/ Hz@0. 1 Hz, 得到了测量数据日变分量、噪声分量的频域分布图。  相似文献   

14.
为提高磁力仪的性能, 给出了自主研发的JOM-1 型Overhauser 磁力仪的工作原理及系统硬件构成, 主要介绍了射频激励电路、信号调理电路、工作时序、仪器的噪声水平及实验结果。野外测试表明该仪器实现了数据采集、显示、存储和查看等基本功能, 信号的初始信噪比为96 颐1, 约为自主研发的JPM-1 型普通质子旋进磁力仪的3 倍, 灵敏度可达0. 14 nT。  相似文献   

15.
为提高传统质子磁力仪综合性能, 同时为研制Overhauser磁力仪提供参考依据, 设计了基于数字信号处理器(DSP: Digital Signal Processor)TMS320F2812研制的JPM-1型质子磁力仪。该磁力仪以DSP为核心实现质子旋进信号的采集和处理, 采用基于DSP的软件过零数频算法计算旋进信号频率。分析了探头初始信号强度, 并通过建立仪器噪声模型分析了仪器噪声。野外测试结果表明, 该磁力仪探头信号初始幅度约为0.4 μV, 初始信噪比为32 ∶1, 灵敏度为0.27 nT。  相似文献   

16.
在航空物探领域,航空矢量磁测目的是测量空间某位置的磁场三分量信息,方法是通过安装在飞行器中的三分量磁力仪实时测量地磁场的三分量数据,并由惯性导航系统实时记录飞机姿态信息。惯性导航设备记录的姿态信息基于地理坐标系,而三分量磁力仪设备测量的磁场值基于载体坐标系。通过分析地理坐标系与载体坐标系之间的对应关系,推导建立航磁测量姿态变换方程,为航磁测量姿态坐标变换提供理论依据。通过姿态坐标变换分析,结合模拟飞行实验,验证了姿态变换方法的正确性和有效性。  相似文献   

17.
基于MSP430的质子旋进式磁力仪设计   总被引:2,自引:1,他引:1  
针对国产的磁力仪功耗大,稳定性较差,精度较低(±1 nT)的问题,采用超低功耗单片机MSP430F149,设计了基于MSP430的质子旋进式磁力仪。给出了质子旋进磁力仪的工作原理及系统的硬件框图,对质子旋进信号的配谐和放大作出了说明,设计了对信号分频测量其周期的高精度间接测磁方法,指出了单片机软件开发的要点。与CZM-2型质子旋进式磁力仪相比,该设计功耗低,稳定性强,精度较高,野外实测待机电流0.8 mA,最大误差0.5 nT。  相似文献   

18.
 碱金属激光器的输出波长无需稳频即可实现中心波长与碱金属原子D1线波长的匹配,在无自旋交换弛豫(SERF)原子磁力计泵浦领域具有较为广阔的应用前景。综述了SERF磁力计泵浦源和碱金属激光器的发展现状,分析了SERF磁力计对泵浦源的需求,讨论了碱金属激光器用于SERF磁力计泵浦源的潜力及面临的问题。  相似文献   

19.
超导量子电路可以被等效地看作人造原子,其内部能级结构随外磁场而变化.这里根据这些超导量子电路中的宏观量子相干性,设计了一种新型的磁强计.这种磁强计不仅体积小,而且具有低耗散和高灵敏度的优点.正因为此,它在读取诸如超导磁通量子比特等量子纳米设备方面,具有很大的应用前景.  相似文献   

20.
针对现有三轴磁力计误差补偿速度慢、需要外部辅助设备、磁力计和惯性传感器组合存在多传感器轴位敏感重合误差问题,提出了一种基于极大似然估计法(maximum likelihood estimation,MLE)的快速有效的磁力计误差补偿算法.根据传感器组合系统中误差来源建立测量误差模型,建立高斯分布的极大似然参数估计模型,用牛顿最优法解算出误差补偿参数,并给出求解理想初始值的算法.仿真数据显示,补偿后的磁力计航向角解算精度达到0.81°,相比补偿前精度提高94.9%.实验结果表明,该算法可简单快速的实现误差补偿,多传感器轴位敏感重合误差得到校准.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号