首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以中国一带一路重点项目西藏圭嘎拉超长隧道2#斜井工程为依托,研究了高原地区特长隧道斜井洞口复杂偏压力学特性与施工优化.采用有限元分析软件MIDAS-GTS NX建立2#斜井洞口段模型,分析复杂斜交偏压斜井洞口改线优化前后围岩变形、洞口衬砌结构内力等变化的力学变化规律,通过改变斜井出洞口线路布置,提出新的施工优化方案.研究结果表明:改线优化后斜井两洞口围岩塑性值降低25.72%,竖向应力分别减小20.68%和21.36%;衬砌结构内力均有不同程度降低;围岩竖向沉降最大值降低33.18%;左洞口拱顶沉降位移降低57.58%.2#斜井通过线路优化后改进施工方案,有效降低围岩复杂偏压对斜井洞口段结构影响,将建模理论计算值与施工现场监测数据进行比较分析,验证了线路优化后的施工方案最合理.  相似文献   

2.
针对超大断面小近距隧道支护设计中的围岩压力分布、位移变形特征问题,以牛寨山双洞八车道公路隧道为研究对象,建立了考虑工程实际地形、工程地质的三维有限元模型,开展了隧道开挖的施工力学形态数值模拟分析,得到了隧道施工过程中隧道围岩变形规律,探讨了小净距大断面隧道近接施工的影响规律.结果表明,小净距大断面隧道所表现出来的施工力学特性复杂,由于偏压的影响,围岩整体水平位移呈非对称分布,最大水平位移发生在南线隧道拱肩处,隧道拱顶下沉最大值发生在先行洞,隧道仰拱处隆起较大;应力集中在两洞仰拱和拱脚处.在此基础上,开展了隧道开挖后的动力有限元计算,分析了洞口段地震力作用下的动力响应,评价了其动力稳定性.计算结果可为优化设计、指导隧道施工以及为隧道稳定性和支护结构安全性评价提供参考.  相似文献   

3.
浅埋偏压赋存条件是诱发连拱隧道大变形灾害的重要因素.以某浅埋偏压公路连拱隧道工程为背景,借助数值模拟方法对比研究不同开挖方案条件下偏压连拱隧道围岩、支护结构及曲中墙力学行为变化规律,并结合现场实测数据分析偏压洞口失稳灾害原因及处治措施.研究结果表明,围岩水平位移和竖向位移呈非对称分布,施工阶段埋深较大侧围岩变形受偏压荷载作用影响更为显著;不同开挖方案条件下中墙水平应力分布差异不明显,而竖向应力分布差异较大,中墙墙脚(拱脚)位置出现水平压应力集中现象;方案Ⅱ条件下隧道初期支护拱顶水平和竖向位移均约为方案I的1.40倍以上,且方案Ⅱ更易引起埋深较大侧隧道中墙墙体因遭受附加偏压荷载作用而发生压裂破坏;针对浅埋偏压洞口大变形诱发原因,给出相应的防治措施,加固处治效果显著.研究成果可为浅埋偏压隧道施工变形控制和灾害防治提供科学参考.  相似文献   

4.
浅埋小净距偏压隧道施工工序的数值分析   总被引:20,自引:3,他引:20  
采用双侧壁导坑法,对浅埋小净距双洞六车道偏压公路隧道在不同开挖顺序下进行施工力学数值模拟。分析不同开挖顺序时的围岩位移、应力、地表位移以及塑性区的变化,并进行比较。数值结果表明:先开挖深埋一侧隧道,围岩塑性区较小,左洞拱顶不会出现围岩拉裂区,右洞拱顶塑性区较小;先开挖各洞外侧,拱顶和中间岩柱的应力、位移较小;后行隧道开挖对先行隧道围岩的受力变形有很大影响,后行隧道开挖导致先行隧道洞周位移和应力大幅度增大;中间岩柱、侧墙和拱顶均是施工中应重点关注的部位。  相似文献   

5.
为研究层状岩体的层厚与倾角对隧道及围岩稳定性的影响,以贵州省栗木山隧道为背景,采用有限元软件ANSYS分析了层状白云质灰岩地层隧道开挖后的围岩与支护结构受力变形特征,得到了不同岩层厚度和结构面倾角时围岩和衬砌的位移云图、关键节点的位移。研究结果表明,隧道拱部竖向位移呈"V"型分布,最大竖向位移出现在隧道拱顶,最大竖向位移随岩层厚度增大而减小,存在明显的临界厚度,当岩层厚度大于0.6m,减小趋势变缓;倾斜岩层隧道围岩与衬砌位移存在明显的非对称性,岩层倾向侧位移小于另一侧,非对称性随倾角增大先增大后减小,倾角45°时最为明显,倾角大于60°时逐渐趋于平稳;拱脚和墙帮的位移受倾角变化小。层状岩体隧道支护设计、施工时应避免拱顶和非对称变形过大造成事故。  相似文献   

6.
应用ANSYS有限元软件,将交通荷载作为静载作用在隧道所穿越路面上,对浅埋隧道施工开挖进行静力二维分析,研究隧道施工中既有线通车时,拱顶与地表面的竖向位移和力学特性、支护结构的受力和安全可靠性,通过二维结果确定隧道设计和施工方案的可行性.  相似文献   

7.
以具有浅埋、偏压、近距离不对称重叠于下部既有小净距隧道等特征的雅山连拱隧道为工程背景,借助数值模拟手段,分析偏压近接重叠条件下连拱隧道正洞采用"先深后浅"及"先浅后深"两种开挖工序下的施工力学形态.通过比较两工序中连拱隧道围岩和既有小净距隧道衬砌的变形情况、中隔墙变位和受力情况,可知两开挖工序中,连拱隧道围岩变形基本一致,竖向沉降和水平位移值分别以右侧深埋正洞拱顶和浅埋左侧正洞与中导洞相交处为最大,其值分别达到3.19 mm和1.17 mm;浅埋偏压条件下,中隔墙自浇筑成型即处于小偏心受压,但其初始倾斜变位因正洞的开挖而逐步得到拨正;连拱隧道岩体开挖将导致既有小净距隧道内侧拱肩-拱腰区域衬砌出现朝向开挖区的变形,且"先深后浅"工序较"先浅后深"工序偏大0.01~0.02 mm.  相似文献   

8.
以兰州市北环路大断面双洞隧道工程为研究背景,采用台阶法进行施工,以ADINA有限元软件为计算平台,建立隧道开挖数值模型,对片麻岩大断面双洞隧道模型进行分析:研究地表位移、围岩位移与内力、锚杆轴力的特点及其变化规律.结果表明对片麻岩大断面双洞隧道采用台阶法施工时,分步开挖对地表竖向位移较水平位移影响大,最大竖向位移值为10.71mm,位于双洞隧道间岩柱上方;上、下台阶土体开挖会对隧道围岩位移及等效应力产生较大影响,应及时进行拱顶初期支护;锚杆轴力集中分布于边墙部位,且沿其辐射方向呈现不断减小的趋势,应对边墙部位锚杆进行加强处理.  相似文献   

9.
公路偏压隧道开挖及支护的数值模拟研究   总被引:1,自引:0,他引:1  
在查明隧道围岩工程地质条件的基础上,运用有限元研究了公路隧道开挖与支护过程中的应力、位移及塑性区的分布规律。结果表明,锚喷支护对于控制围岩拱顶和底鼓的变形作用明显,拱顶竖向位移在施作锚喷支护后增幅明显减小,在二次衬砌施作之前趋于稳定;隧道稳定性最不利位置在拱顶、拱腰和底部,建议设计时适当增加锚杆的数量,施工时要加强初期支护并控制好喷射混凝土的厚度,防止过大的回弹变形。  相似文献   

10.
为了探究黄土隧道变形特性,基于有限元强度折减法,建立了隧道在不同埋深条件下的有限元模型,进行了隧道穿越青海东部地区黄土地层时的极限位移值研究.结果表明:在同一埋深条件下,随着折减系数的增大,隧道洞周的变形不断增大,当达到某一临界值时,位移出现突变;隧道埋深10 m,其安全系数为2.6,拱顶沉降极限位移值为10.3 mm,墙腰水平收敛极限值为14.2 mm;隧道埋深30 m,其安全系数为2.2,拱顶沉降极限位移值为26.0 mm,墙腰水平收敛极限值为46.4 mm;隧道埋深50 m,其安全系数为2.0,拱顶沉降极限位移值为36.8 mm,墙腰水平收敛极限值为52.7 mm.结论可为有类似工程地质条件隧道设计、施工、监测提供参考.  相似文献   

11.
以重庆两江隧道为研究背景,采用公路隧道结构与围岩综合实验系统对交错隧道进行三维物理模型实验,分析新建隧道施工力学特性,并采用数值模拟对模型实验区域进行对比分析。研究表明:新建隧道左侧周边位移普遍大于右侧周边位移;左侧周边位移大于独立隧道单侧周边位移;右侧周边位移小于独立隧道单侧周边位移;得出不同近接间距下周边收敛和拱顶下沉随隧道开挖的发展趋势;模型实验获得的拱顶下沉和周边收敛归一化后得出位移随近接间距的变化规律。数值模拟获得的周边收敛和拱顶沉降与还原后模型实验结果相接近,表明模型实验结果与数值计算结果一致。  相似文献   

12.
以深圳地铁双护盾TBM工法隧道工程为依托,基于MIDAS/GTS NX有限元软件,采用摩尔库伦弹塑性模型,根据刚度折减法建立三维数值模型,分析断层不良地质对隧道稳定性的影响,并与隧道净空收敛现场监测结果进行对比分析,研究验证了数值模型和计算参数的正确性,得到了断层对隧道结构竖向位移影响范围为断层前后1.15D,最大位移值为2.878 mm.对隧道结构水平位移影响主要在断层区域,最大收敛值为5.611 mm.管片应力主要为压应力,最大主应力顺序为拱底边墙拱顶,最小主应力顺序为拱顶边墙拱底.并根据研究结果针对断层不良地质提出几点加固施工措施,确保双护盾TBM顺利施工.  相似文献   

13.
双向八车道隧道开挖断面大,扁平率低,结构受力复杂,洞间相互影响显著,且目前已有工程实例甚少,技术研究尚处于初步阶段,无论从设计还是施工,均未形成完整的配套技术.本文以泉州高山岩2#和3#主线隧道为工程依托,通过有限元软件对其施工过程左右洞相互影响进行模拟,并结合现场监控量测结果进行综合评价.研究结果表明:在不同的工况模拟下,隧道拱顶沉降、周边位移整体变化趋势基本一致;后行洞开挖使得先行洞拱顶沉降有所增长,但最终收敛值相差较小,且拱顶沉降相比周边位移要大;隧道左右洞施工相互影响最小的安全相邻掌子面纵向间距约为隧道开挖洞径的1.5倍.  相似文献   

14.
粉煤灰堆积体自稳能力差,受力即破碎成散颗粒,隧道穿越粉煤灰场区时失稳围岩对施工安全构成极大威胁。以盐坪坝连拱隧道为依托,根据粉煤灰力学性质对比选用了塑性-硬化本构,通过有限差分软件FLAC3D对不同开挖错距进行数值模拟,设置中导洞上下台阶以及左右洞开挖错距工况分别为5m、10m和15m,研究不同开挖错距对粉煤灰堆积地层中双连拱隧道的围岩和结构的影响。结果表明:中导洞台阶开挖错距不宜超过10m,15m错距相比10m错距应力最大值增长了36.82%,左右洞采用小开挖错距可以有效减少中导洞拱顶位移;中导洞开挖完成后左右洞拱顶竖向位移已达到其总沉降量约50%,左洞拱顶沉降位移与开挖错距近似线性增长,后行洞开挖过程中对先行洞造成的影响较大;主洞采用不同开挖错距时应力积聚分布在不同位置,开挖错距大于10m后结构受力增幅快速增长,15m错距相比10m错距应力最大值增长了17.28%。可见主洞开挖错距不宜超过10m。  相似文献   

15.
四车道大跨度浅埋黄土隧道开挖方案数值分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为保证四车道浅埋黄土隧道的施工安全,优化施工方案,采用数值模拟手段对大断面黄土隧道开挖常用的三台阶七步开挖、中隔壁、交叉中隔壁和双侧壁4种方法进行系统的对比和分析。结果表明:(1)四车道浅埋黄土隧道与普通的两车道隧道变形存在较大差异,拱顶下沉显著增大,水平收敛较小且拱脚有向外挤出的趋势,故变形监测应以拱顶下沉为主;(2)地层竖向位移随深度的增加线性增大,距拱顶4m范围内呈指数型增大,且与洞周形成塑性区有关;(3)围岩应力均未超过其强度极限,初期支护应力较大,起到了主动承载和控制围岩松弛的作用,其与围岩共同承担大部分荷载,二次衬砌应力普遍较小,可为隧道结构提供安全储备;(4)变形控制要求严格的地区推荐使用双侧壁法,允许较大变形的情况优先采用三台阶七步开挖法。结论可为黄土隧道设计和施工方法的选择提供理论依据。  相似文献   

16.
基坑开挖会造成下部隧道周围土压力变化以及土体产生位移,使隧道结构稳定性受到影响,从而变形控制显得尤为重要。以合肥南站南广场基坑工程实测数据为例,采用PLAXIS 2D有限元软件对基坑下部隧道和地表变形的情况进行数值计算。研究表明:数值计算结果与实测值较为吻合,隧道发生竖向和水平位移,竖向位移比水平位移大,隧道的位移值随着开挖深度呈线性趋势;基坑开挖会引起隧道上方地表变形,地表沉降呈向下二次抛物线形式,坑底产生了塑性隆起。  相似文献   

17.
以某高速公路连拱隧道为研究对象,采用数值模拟方法研究破碎岩质斜坡下浅埋连拱隧道施工力学响应特征,并分析加固措施和开挖顺序对隧道围岩和结构应力与位移的影响规律。研究结果表明,偏压连拱隧道围岩水平和竖向位移均呈非对称分布,斜坡左上方为水平位移敏感区,拱顶和隧底竖向位移分别表现为沉降和隆起;中墙墙脚处出现水平应力集中现象,深埋侧中墙墙身受偏压作用显著,加固围岩可降低中墙墙身应力约16%以上,而先开挖深埋侧隧道会引起中墙墙身竖向应力增加达22%;初期支护结构位移呈非对称曲线分布,拱脚位置水平位移较大,左右两侧位移方向相反;从控制围岩和支护结构位移角度,采取斜坡与隧底破碎围岩注浆加固措施后处治效果显著,且宜优先进行地形偏压浅埋侧隧道施工。研究成果可为类似地质地形条件的偏压隧道设计与施工提供科学参考。  相似文献   

18.
针对层状岩体偏压隧道在不同岩层倾角下的围岩稳定性问题,采用3DEC离散元数值模拟,研究了顺、反倾层状岩体双洞隧道随岩层倾角变化时的围岩变形规律,并对隧道偏压程度进行了分析.研究结果表明:随着岩层倾角的增大,隧道围岩变形从岩层弯曲变形逐渐向顺层面滑移变形转变,临界角度为45°;左洞最大拱顶沉降为23.60 mm,比右洞最大拱顶沉降小17.94 mm,可见先开挖隧道围岩变形较大;从应力计算结果看,岩层倾角从0°到90°变化时,隧道偏压程度随其增大有所起伏,但总趋势是增加的.以顺倾右洞隧道为例,在倾角为45°时,隧道拱肩、拱腰、边墙的竖向应力差分别为0.45、0.42、0.40 MPa,应力差最小,偏压程度最好.在倾角为90°时,应力差分别为0.65、0.64、0.67 MPa,应力差最大,隧道偏压最为明显.研究的相关成果可为山岭偏压隧道的设计和施工提供有益参考.  相似文献   

19.
以合肥地铁3号线某区间隧道为工程背景,运用有限元数值模拟软件MADAS/GTS建立三维隧道施工的数值模型,计算隧道施工过程中引起的地表沉降。分析盾构施工在不同掘进距离条件下地表沉降的变形规律。模拟结果表明:在拱顶位置地表产生沉降最的大竖向位移。隧道下部围岩的最大隆起发生在拱底处;地表横向沉降范围随着开挖面的推进而不断加大,盾构施工的横向影响范围为隧道直径D的3倍。盾构施工造成的隧道下部围岩横向沉降影响范围约为洞径的2倍。  相似文献   

20.
针对双连拱隧道在施工过程中的中隔墙受力、变形问题,运用MIDAS GTS 2.6大型有限元程序建立了重庆市高新区森谷路双连拱隧道地层结构法数值模拟计算模型。对双连拱隧道三导洞台阶法开挖具体施工阶段进行数值模拟,同时双连拱隧道中隔墙进行受力变形分析。得到了各施工阶段中隔墙应力及位移变化情况,得出三导洞台阶法开挖工法施工过程中中隔墙应力及竖向位移均呈现"对称—不对称—对称"的分布过程,并对施工过程中可能的风险提出了切实可行的处理措施,以期对双连拱隧道的设计和施工提供一定的理论借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号