首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
乙酰胆碱酯酶电极反应机理   总被引:2,自引:0,他引:2       下载免费PDF全文
在研究酶电极基础上探讨了电极上的反应机理。以乙酰胆碱酯酶催化活性为基础的抑制型酶电极的电极反应是:1)催化底物水解;2)底物中的I-被氧化为I2;3)底物氯化硫代乙酰胆碱分解产生的硫代胆碱含有的-SH基在银基汞膜电极上与汞生成硫醇汞盐。硫代胆碱在玻碳电极表面的氧化,为具有吸附性的不可逆过程,电极反应的电子转移数n=2,反应速率常数k=0.29s-1。  相似文献   

2.
用循环伏安法研究了色氨酸在玻碳电极上电化学氧化机理,实验发现色氨酸在玻碳电极上反应的峰电流和峰电位受溶液酸度的影响并且色氨酸在电极上有微弱吸附,该反应是1个2电子的简单电荷传递反应。  相似文献   

3.
用循环伏安法研究了儿茶素在玻碳电极(GCE)和多壁碳纳米管修饰玻碳电极(MWCNT/GCE)上的电化学行为,探讨了电极反应机理。结果表明:MWCNT/GCE对儿茶素具有显著的电催化作用,儿茶素在MWCNT/GCE上的氧化还原峰电位差比在GCE上明显减小,且峰电流显著增加。电极反应为2电子、2质子转移的准可逆反应过程。  相似文献   

4.
 采用电沉积法制备了玻碳基Pt/C电极和玻碳基Pt/C/NH4NiPO4电极,利用扫描电镜表征了电极表面形貌,应用电化学工作站测试了电极的电催化性能。根据循环伏安曲线分析可知,玻碳基Pt/C/NH4NiPO4复合电极电催化乙醇性能明显,电极反应速度快,氧化过程主要受乙醇分子的扩散控制,氧化电流较大,相对玻碳基Pt/C电极第一氧化峰电位,玻碳基Pt/C/NH4NiPO4复合电极正向扫描第一氧化峰电位降低237mV,是电催化乙醇潜在的特色电极。  相似文献   

5.
 在20%的乙醇和B-R缓冲溶液(pH为7.2)中,分别比较了青蒿素(artemisinin,qhs)在金电极、银电极、铂电极、玻碳电极上的电化学行为,结果表明:在+0.00~-1.30V(vs.SCE)的电位范围内,青蒿素在金电极和铂电极上无氧化还原峰信号;而在银电极和玻碳电极上有一还原峰,无氧化峰,峰电位为分别-0.64V和-0.91V.此外在银电极和玻碳电极上,血红素(hemin)能够催化青蒿素的还原.  相似文献   

6.
利用循环伏安法和强制对流法研究碳原子线修饰电极对于对苯二酚电化学反应的催化作用.与裸玻碳电极相比,碳原子线修饰玻碳电极在含有1mmoL/L对苯二酚的0.1mol/L HCl溶液中的循环伏安曲线上的氧化峰电位Epa负移了102.5mV,氧化峰电位Epc正移了143.3mV,氧化峰电流ipa和还原峰电流ipc分别增大6.3和11.0倍.强制对流法测得对苯二酚在碳原子线修饰电极上的电化学氧化反应的异相电子传递标准速率常数k^0比裸电极增加5.7倍,显示了该修饰电极非常高的电催化活性.  相似文献   

7.
用甲基蓝和乙炔黑纳米材料修饰玻碳电极制备了对乙酰氨基酚传感器.用循环伏安法研究了对乙酰氨基酚在该传感器上的电化学行为.结果表明:该传感器对于对乙酰氨基酚的氧化还原具有良好的电催化性能.相对于裸玻碳电极传感器,对乙酰氨基酚在甲基蓝和乙炔黑纳米材料修饰玻碳电极的传感器上的氧化峰的峰电流显著提高.利用差分脉冲伏安法进行分析测试,对乙酰氨基酚在2.0~400#mol/L浓度范围内与其氧化峰的峰电流呈良好的线性关系,线性相关系数为0.992.信噪比为3时对乙酰氨基酚检出限为0.6#mol/L.用于对乙酰氨基酚药片检测,回收率99.3%~103%.  相似文献   

8.
碳原子线修饰电极对尿酸的电催化作用   总被引:1,自引:1,他引:0  
通过循环伏安法和差分脉冲伏安法研究了碳原子线(CAW)修饰电极对尿酸电化学反应的催化作用.研究发现,在含有0.5 mmol/L尿酸的pH=6.8的0.1 mol/L PBS缓冲溶液中,尿酸在CAW修饰电极上的氧化峰电位比裸玻碳电极上的氧化峰电位负移0.049V,而氧化峰电流ipa比裸玻碳电极增加了3.96倍,说明碳原子线修饰电极对尿酸的电化学过程具有很好的催化作用.  相似文献   

9.
循环伏安法是一种很有用的电化学研究方法,可用于电极反应的性质、机理和电极过程动力学参数的研究。本实验以玻碳电极为工作电极、铂电极为辅助电极、饱和甘汞电极为参比电极的三电极体系中,采用循环伏安法研究了苯酚在玻碳电极上的电化学行为。研究了介质浓度、溶液pH和扫描速率对苯酚测定的影响,并研究了氧化峰电流与扫描速率之间的关系,结果显示:峰电流与扫描速率在0.008~0.400 V/s之间有良好的线性关系,线性相关系数r=0.9973。  相似文献   

10.
将纳米MnO2修饰于玻碳电极表面,研究了纳米MnO2在玻碳电极上的直接电化学行为.实验结果表明:固载纳米MnO2的玻碳电极在pH为9.48的NH3-NH4Cl的缓冲溶液中于0.0~0.8 V(vs SCE)的电位范围内出现一对峰形较好的不可逆氧化还原峰,其氧化过程在较低扫速时属吸附-扩散混合控制,此时阴极传递系数α=0.547 7,阳极传递系数β=0.452 3,在较高扫速时属吸附控制.同时在pH=8.0~10.5范围内其氧化峰电位与pH值呈现较好的线性关系.  相似文献   

11.
将纳米Pt/玻碳和纳米Pt -WO3 /玻碳电极应用于乙醇的电催化氧化 ,发现所制备的催化剂电极具有较高的电催化活性。探讨了乙醇在这些电催化电极上的循环伏安曲线中各个峰产生的原因  相似文献   

12.
本文利用旋转圆盘电极研究聚苯胺对抗坏血酸的电催化过程动力学.研究结果表明,在酸性溶液中聚苯胺膜电极对抗坏血酸的氧化反应有电催化作用,与在光玻碳电极上相比,其峰电位负移、峰电流增高;在低转速时是扩散控制,达一定转速后催化反应为控制步骤.  相似文献   

13.
乙醇在碳载纳米Pt及纳米Pt—WO3电极上的催化氧化   总被引:4,自引:0,他引:4  
将纳米Pt/玻碳和纳米Pt—WO3/玻碳电极应用于乙醇的电催化氧化,发现所制备的催化剂电极具有较高的电催化活性。探讨了乙醇在这些电催化电极上的循环伏安曲线中各个峰产生的原因。  相似文献   

14.
四溴双酚A在玻碳电极上的电化学行为   总被引:3,自引:0,他引:3  
采用循环伏安法研究四溴双酚A (TBBPA)在玻碳电极上的电化学行为,建立了TBBPA的差分脉冲伏安分析法.结果表明,在pH6.0的磷酸盐缓冲溶液中,0.3~1.0V电位区间内,TBBPA在玻碳电极表面发生的电极反应是受扩散控制的不可逆等电子、质子转移过程.以差分脉冲伏安法测得其氧化峰电流与其浓度在0.1~5.0 μm...  相似文献   

15.
用循环伏安法和线性单扫描伏安法研究了L-色氨酸在单壁碳纳米管/玻碳修饰电极上的电化学行为,探讨了不同缓冲液、pH值以及扫描速度等的影响.实验表明在pH=5的乙酸铵介质中,L-色氨酸在单壁碳纳米管/玻碳修饰电极上的电氧化过程是一完全不可逆过程,于0.703 V(vs. SCE)处产生一灵敏的不可逆氧化峰,峰电位相对于裸玻碳电极负移55mV,峰电流大大增加.峰电流与L-色氨酸的浓度在5.0×10-6-1.0×10-4 mol/L 范围内有良好的线性关系,相关系数R为0.9984,检出限为1.0×10-7mol/L,样品检测平均回收率为98.80%.  相似文献   

16.
利用循环伏安法等电化学方法研究了甲醇在铂微粒修饰的玻碳电极上的电催化氧化,结果表明,铂微粒修饰玻碳电极(GC—Pt)对甲醇电化学氧化呈现较高的催化活性,活化后的玻碳电极再修饰铂微粒表现更高的催化活性,其催化活性的大小与铂载量有关,同时测定了甲醇电催化氧化反应的动力学参数。  相似文献   

17.
多壁纳米碳管修饰玻碳电极伏安法测定色氨酸   总被引:1,自引:1,他引:0  
制备了多壁纳米碳管修饰玻碳电极,研究了色氨酸在该电极上的电化学行为并优化了测定条件.与玻碳电极相比,该修饰电极明显降低了色氨酸的氧化峰电位,提高了氧化峰电流.在pH7.2的磷酸盐缓冲溶液中,测定色氨酸的线性范围为 2.5~140 μmol/L,检出限为0.12 μmol/L.对10 μmol/L色氨酸测定的相对标准偏差为3.4 %( n= 8).一些常见物质对测定无干扰,应用于人体尿样中色氨酸的含量测定, 结果满意.  相似文献   

18.
构建了一种基于乙炔黑/壳聚糖膜修饰电极的壬基酚电化学测定方法.分别实验了壬基酚在裸玻碳电极和膜修饰电极上的电化学行为,并对实验条件进行了优化.结果表明,壬基酚在pH 7.0的磷酸盐缓冲体系中,在乙炔黑/壳聚糖膜修饰电极上具有灵敏的电化学响应.相对于裸玻碳电极,壬基酚在膜修饰电极上的氧化峰电流大大提高,峰电位负移50 m...  相似文献   

19.
研究了鲁米诺在玻碳电极上的电化学行为.鲁米诺在玻碳电极上发生不可逆的氧化反应,伴有电活性质粒的弱吸附现象,是一个吸附-扩散混合控制过程.考察了一些因素对鲁米诺电氧化过程的影响,并对电氧化机理进行了讨论.  相似文献   

20.
将多壁碳纳米管(MWNT)与壳聚糖(CS)的混合液滴涂到玻碳电极表面,再引入纳米金(GNPS)与天青Ⅰ(AI)制得了AI/GNPs/CS/MWNT修饰电极,并探讨了该修饰电极的电化学性质.实验表明:该修饰电极对烟酰胺腺嘌呤二核苷酸(NADH)的电化学氧化具有很好的催化活性.NADH氧化峰电位比未修饰的玻碳电极负移了660mV,氧化峰电流与其浓度在9.10×10-6~5.53×10-3 mol/L的范围内呈良好的线性关系,相关系数为0.997,检出限为4.50μmol/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号