共查询到20条相似文献,搜索用时 0 毫秒
1.
采用固相法制备PrBa0.5Sr0.5Co2O5+δ(PBSC)中温固体氧化物燃料电池阴极材料.研究结果表明:PrBa0.5Sr0.5Co2O5+δ为正交钙钛矿结构.交流阻抗谱的测试结果表明,PBSC-40%GDC电极在800℃时的极化电阻为0.039Ω.cm2.以电解质为支撑体的单电池在800℃时的功率密度达到645 mW.cm-2. 相似文献
2.
为发展中温固体氧化物燃料电池(IT-SOFC)的阴极材料,用柠檬酸络合法合成了Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCF)粉体,并在BSCF中加入一定量的金属Ag作为SOFC的阴极材料.高温电阻测试表明复合阴极材料(BSCF-Ag)比纯BSCF材料具有较高的电导率.同时用交流阻抗法研究了BSCF-Ag复合阴极材料的性能,实验结果表明BSCF-Ag复合阴极材料的极化电阻明显小于纯BSCF,在750℃BSCF的极化电阻为0.41Ω.cm2,而BSCF-Ag的电阻仅为0.12Ω.cm2,约为BSCF的1/4.这标志着参杂Ag的BSCF阴极材料的性能明显优于纯BSCF材料. 相似文献
3.
通过溶胶-凝胶制备双钙钛矿PrBaCo_2O_(5+δ)(PBCO)中温固体氧化物燃料电池阴极材料,研究结果表明:PrBaCo_2O_(5+δ)为四方结构.在100~850℃内,PBCO样品为金属导电机制.交流阻抗谱的测试结果表明:PrBaCo_2O_(5+δ)电极在800℃时的极化电阻为0.034 8Ω·cm~2.采用La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(3-δ)(LSGM)电解质为支撑体的单电池在800℃时的功率密度达到558.7 m W/cm2. 相似文献
4.
利用甘氨酸法合成复合材料La0.6Sr0.4Co0.2Fe0.8O3-δ-Ce0.8Ca0.2O1.9,该材料作为中温固体氧化物燃料电池的阴极材料被研究,XRD、SEM-EDS、O2-TPD等被用于检测材料的各种性能.得到优化的合成温度是1 100 ℃,在该温度条件下晶粒的平均粒径为400 nm,而且所合成的样品的元素比与所设计的化学计量比吻合.LSCF70-CDC的电导率在700℃温度下最高.氧的解吸结果表明结构中存在着几种不同类型的氧. 相似文献
5.
孟祥伟 《吉林师范大学学报(自然科学版)》2020,41(3)
采用溶胶-凝胶法制备了PrBaCoCuO_(5+δ)(PBCC)阴极.PBCC样品经1 000℃烧结10 h后已成纯相,为正交钙钛矿结构.其电导率经历了半导体到金属导电机制的转变.当测试温度为350℃时,电导率达到了最大值152 S·cm~(-1).当测试温度为700℃、750℃、800℃和850℃时,PBCC阴极的界面极化阻抗分别为0.197、0.101、0.056和0.032Ω·cm~2.其单电池的功率密度在850℃时为421 mW·cm~(-2). 相似文献
6.
本文初步研究了一种新型中温固体氧化物燃料电池的性能,包括工作温度、功率输出特性以及电池的稳定性等,试验结果表明,制备的PEN单电池可以在500~600℃的温度下工作,开路电压(OCV)达O.8~1.0V,电池输出功率密度可达0.1W/cm2。升高温度可以提高电池性能,同时又降低了电池的稳定性,较合适的工作温度为550℃左右。 相似文献
7.
采用柠檬酸盐法合成了LaNiO3粉体,对其进行氢化物还原反应,制得具有单一结构的高氧缺位物相LaNiO2.5。以Ba(Zr0.1Ce0.7Y0.2)O3-δ(BZCY)为电解质制备了LaNiO2.5-BZCY复合阴极,利用扫描电镜对其微观结构进行了表征,并通过交流阻抗测试及直流极化测试对其电化学性能进行了研究。结果表明,LaNiO2.5-BZCY复合阴极在600~800℃范围内的极化面电阻为5.27~0.22Ω.cm2,其氧还原反应速率控制步骤为氧分子的解离以及氧原子的电荷转移。另外,该阴极的极化过电势较高,在750℃及电流密度为0.05A.cm-2时的极化过电势为75mV。 相似文献
8.
通过固相反应法合成La0.75Sr0.25Cr0.5Mn0.5O3-δ(LSCM)以及Ce0.8Sm0.2O1.9(SDC)粉体。采用X线衍射仪(XRD)、扫描电子显微镜(SEM)、电化学阻抗谱法、循环伏安法和热膨胀法分别对试样的晶体结构、化学相容性、微观结构、电化学性能和热膨胀系数进行了研究。结果表明:LSCM阳极与SDC之间具有良好的化学相容性;含有SDC中间层的LSCM阳极显示出更小的比表面电阻和极化过电位;在800℃H2气氛下,含有SDC中间层的LSCM阳极的比表面电阻为0.76Ω.cm2,与单层LSCM阳极相比下降了72.1%,阳极极化过电位(电流密度为0.05A/cm2)下降了70.4%;SDC中间层的加入会导致热膨胀不匹配率的略微增大。 相似文献
9.
固体氧化物燃料电池(solid oxide fuel cell, SOFC)阴极材料的高稳定性、高催化性能是其获得商业化应用的前提。尖晶石氧化物具有良好的稳定性与兼容性,这使得其成为最具发展潜力的SOFC阴极材料之一。本文通过Mg掺杂对尖晶石氧化物Mn1.5Cr1.5O4阴极材料进行改性处理,研究了Mg掺杂量对Mn1.5Cr1.5-xMgxO4(x=0,0.075,0.150,0.225)阴极材料微观结构、物相组成、电导率、热膨胀系数及其作为对称电池阴极时电化学性能等方面的影响。结果表明,当Mg掺杂量x为0.150时,Mn1.5Cr1.35Mg0.15O4具有最大的电导率和最小的极化阻抗,在800℃下分别可达0.168 S/cm和1.84Ω·cm2,表明适量的Mg掺杂不仅提高了Mn1.5Cr1.... 相似文献
10.
固体氧化物燃料电池阴极材料 La_(1-x)Sr_xMnO_3 研究 总被引:1,自引:0,他引:1
固体氧化物燃料电池以其高效、低污染等优越性被认为是未来很有希望的发电方式,越来越受到广泛关注,La1-xSrxMnO3材料是目前最受重视的阴极材料。该文采用固相反应法合成了该材料粉末,对合成反应工艺参数进行了优化。采用四电极法在空气中测定了材料的电导性能,测试温度为室温到1000℃,测试结果表明:电导率随Sr掺杂比例增加和温度升高而增大,随孔隙率的增加而变小。还对材料La1-xSrxMnO3晶体结构和烧结性能进行了研究。 相似文献
11.
为改善La0.6Sr0.4Co0.2Fe0.803 (LSCF)阴极的电化学催化性能,通过浸渍工艺制备了PrCo03(PCO)纳米粒子修饰的PCO@LSCF阴极,采用X射线衍射、扫描电子显微镜、电化学交流阻抗对材料的结构和性能进行表征.结果 表明,LSCF的表面被PCO纳米粒子修饰后,650℃阴极的极化阻抗降低了10%... 相似文献
12.
13.
采用机械混合法制备中温固体氧化物燃料电池梯度复合阴极材料LaBaCo2O5+δ-Ce0.8Sm0.2O1.9(LBCO-SDC)。通过X线衍射(XRD)分析、扫描电镜(SEM)分析、热膨胀法、交流阻抗谱法和循环伏安法分别对晶体结构、界面微观结构、热膨胀性及电化学性能进行表征。结果表明:LBCO阴极与SDC电解质之间具有良好的化学相容性;电解质SDC的添加有效地降低了阴极材料LBCO的热膨胀系数;双层梯度复合阴极比单层阴极表现出更小的比表面电阻以及极化过电位,显示出更好的电化学性能;在700℃时,双层梯度复合阴极的比表面电阻与LBCO阴极相比下降了约13.2%,极化过电位(电流密度为0.20 A/cm2)从51.0 mV下降到46.4 mV。 相似文献
14.
本文建立了一类不可逆固体氧化物燃料电池(SOFC)与半导体温差热电发电器(TEG)的混合发电系统模型,基于非平衡态热力学理论,导出混合系统一些重要性能参数诸如输出功率、效率和最小电流密度等的一般表达式,分析系统的性能特性和优化性能,给出系统在最大输出功率或最大效率时的优化条件,确定系统一些重要性能参数的优化工作区域,详细讨论系统的一些主要不可逆性对系统优化性能的影响,得到一些有意义的新结论.所得结果可为实际混合发电系统的设计和优化运行提供理论依据. 相似文献
15.
综述了导电陶瓷材料在固体氧化物燃料电池中的应用现状,分别从燃料电池的关键组件(电解质材料、阴极材料、阳极材料和连接材料等方面)对导电陶瓷的要求及其研究现状进行了讨论,提出目前研究广泛的导电陶瓷在固体氧化物燃料电池中存在问题。 相似文献
16.
以稀土复合氧化物La_0.7Sr_0.3CoO_3为阴极材料,YSZ为电解质,Pt为阳极,组装了H_2-O_2燃料电地.测试了电地的V-I特性曲线.结果表明,在1000℃时电池的开路电压为1.08V;最大输出功率密度的工作电压为0.54V,电流密度为150mA/cm ̄2. 相似文献
17.
固体氧化物燃料电池(SOFC)具有稳定性高、寿命长、污染低等优点,是二十一世纪的绿色能源之一。当前SOFC阴极通常采用掺杂的ABO3钙钛矿型材料。这类材料在高温下具有较高的导电率和催化活性,但中温化是SOFC的趋势,高温下常用的La(Sr)MnO3阴极材料在中温下性能下降,不能满足中温下电导率的要求。本论文尝试采用柠檬酸燃烧法来制备YBa2Cu3O7-δ,并在YBCO中加入一定量的Sm2O3掺杂的Ce2O3(SDC)作为SOFC的阴极材料,通过对阻抗分析,研究了SDC掺杂量、烧结温度等对该阴极材料性能的影响。实验结果表明:随着SDC的掺杂量x(0≤x≤50%)和烧结温度的升高,阴极材料的界面阻抗减小。在SDC的掺杂量为50%时,且在800℃下烧结得到的烧结体界面阻抗最小,其界面比电阻仅为0.1353ohm/cm2(800℃),这标志着掺杂SDC的YBCO作为中温固体氧化物燃料电池的阴极材料时非常具有发展前景的。 相似文献
18.
以金属硝酸盐Ce(NO3)3、Y(NO3)3、Mg(NO3)2为原料,采用溶胶-凝胶法制备系列电解质材料Ce0.8Y0.2-xMgxO2-δ(x=0、0.02、0.04、0.06、0.08、0.1),并通过扫描电镜(SEM)、X射线衍射(XRD)、电化学阻抗谱(EIS)等手段对样品进行测试表征.结果表明,电解质材料经600℃煅烧3 h后形成立方萤石结构,并具有较高的烧结活性.压制成片的电解质在1 550℃下烧结仍为立方萤石结构,较为致密;电化学性能研究表明,800℃时电导率为0.039 S/cm, Ce0.8Y0.2-xMgxO2-δ电解质材料可以作为中温固体氧化物燃料电池的候选材料. 相似文献
19.
固体氧化物燃料电池(SOFCs)是一种清洁高效的发电技术,在分布式发电站、家庭热电联供以及电动汽车领域具有广阔的应用前景。然而SOFCs性能的快速衰减导致运行寿命缩短,阻碍了其商业化进程。本文旨在研究运行条件对SOFCs性能衰减和阳极微观结构演变的影响规律,给电池性能和稳定性的优化提供理论指导。本文研究了不同运行温度、放电电流密度、运行时间对电池端电压、极化阻抗以及微观结构的影响,解析了阳极微观结构演变规律。研究结果表明,电池放电初期会经历一个快速的衰减期,然后达到稳定状态。大电流密度放电会增加阳极的极化,从而加剧电池初期的衰减率。通过电池阻抗的解析发现初期衰减主要来自于阳极极化电阻的增加。通过阳极微观结构解析,发现阳极与电解质界面活性区域中的Ni催化剂的流失是导致电池运行初期性能下降的主要原因。经过初期快速衰减后,电池性能趋于稳定,在恒流放电工况下运行3000 h,极化电阻增长率仅为0.17%/kh。通过阳极微观结构的三维重构解析可知,在经历初期快速衰减后,电池阳极微观结构的变化较小,电池稳定性较好。未来的研究重点将聚焦在提高电池在复杂工况下的耐久性,并通过调控阳极组成和微观结构抑制电池性能的快速退化。 相似文献
20.
为降低固体氧化物燃料电池(SOFC)的工作温度,发展新型中低温固体氧化物燃料电池阴极材料,采用固相反应方法,将元素Sr替代Sm进行掺杂制备一种新型阴极材料Sm0.5Sr0.5VO4.XRD谱图显示,在900℃下处理的样品形成了单相稳定的四方钙钛矿结构晶体,其晶格常数比没有进行掺杂的SmVO4晶格常数略微降低,说明Sr已经很好地掺杂进入SmVO4的晶格结构中;在650~750℃,单电池最大输出功率密度为209.5 mW/cm2,最大输出电流密度为138.3 mA/cm2.制备的阴极材料显示了良好的电化学性能. 相似文献