首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
通过理论分析,建立了激光等离子体加速电子与固体靶相互作用产生相对论正电子的物理模型,以及Geant4模拟程序.以100 Me V量级的激光等离子体加速电子束参数为输入,模拟研究了不同靶材和靶厚条件下正电子束的产额、能量、角分布等主要物理参数.结果表明:金靶和钽靶是较优秀的电子—正电子转换靶材;对于相同的金属靶材面密度,正电子产额与原子序数Z的四次方成正比,与原子质量数A的平方成反比,即Ne+∝(Z2/A)2;对于不同的靶材,正电子产额有Ne+∝d2,其中d为靶材厚度,但仍存在一个最佳靶厚度.与利用拍瓦、皮秒激光束与固体靶相互作用产生正电子束的方案相比,利用本方案有望获得更高能量以及更小角发散的相对论正电子束,其流强可达107/shot.  相似文献   

2.
随着超短超强脉冲激光技术的发展,人们可以在台面尺度获得光强超过1018W·cm-2、脉宽小于100fs的超短脉冲激光.这种超短脉冲激光很容易把初始静止的电子加速到相对论能量.而更重要的是超短激光脉冲可以通过其有质动力激发大振幅的等离子体波(称为激光尾波场),把电子加速到更高的能量.其加速梯度可达到100GeV·m-1,即在1mm的空间尺度把等离子体电子加速到100MeV.国际上4个实验室在2004年报道通过激光尾波场加速获得能量单色性以及方向性极好的电子束,使人们看到了激光尾波场加速电子的实际应用前景.文中简要介绍等离子体中激光尾波场加速电子的物理机制和方案、及该领域的最新进展和展望.  相似文献   

3.
从热力学三个定律的角度阐述了激光产生的基本原理 ,并解释了所谓负温度意味着非平衡态熵减少 ,系统趋向有序  相似文献   

4.
密度减稀等离子体中激光尾场加速电子研究   总被引:1,自引:1,他引:0  
激光尾场加速电子是当前十分重要的物理前沿研究课题.介绍了激光尾场对电子加速的原理,并给出在等离子体密度绝热减稀条下加速电子的新机制,指出从原理上实现单级GeV量级加速的可行性,最后介绍了实验方面的相关新进展.  相似文献   

5.
本文数值模拟研究了中性束注入等离子体产生的快离子空间分布,讨论了快离子空间分布随中性束在等离子体中平均自由程变化情况.采用HL_2A装置参数模拟了线束和扩散束两种情况下快离子的空间分布,结果表明束粒子在等离子体中的平均自由程对束的沉积剖面影响较大,当平均自由程与小半径相当时快离子密度分布在在磁轴处有一个较大的峰值.  相似文献   

6.
李明 《科技资讯》2008,(36):8-8
结合(lingetal2001)实验模型,运用蒙特卡罗方法模拟了随机增益介质中的非相干辐射过程,在TiO2/若丹明有机增益介质中,研究光子的平均自由程对随机激光器阈值强度的影响。模拟结果表明:随机激光阈值与光子的平均自由程有关,随平均自由程的减少,激光阈值下降,两者成幂函数关系,与实验的结果拟合。  相似文献   

7.
在激光等离子体相互作用中对自注入电子束的加速及其对尾场的影响进行了理论研究.自注入电子束在空泡底部削弱了激光尾波静电场.随着自注入电子束电荷密度的增加,尾波场结构明显改变和空泡纵向变长.随后的鞘层电子须以较高的初始纵向动量才能自注入到不断演化的空泡尾场中.当自注入电子束的库仑场大于空泡内静电场时,该电子束将驱动等离子体尾波场.  相似文献   

8.
碳氧比能谱测井中能谱及探测器响应的数值模拟   总被引:1,自引:0,他引:1  
利用蒙特卡罗中子粒子(MCNP)联合输运程序,对在井几何条件下地层中碳、氧、硅、钙等元素发生非弹性散射产生的伽马射线的测量谱及不同探测器的响应进行了模拟。结果表明,同种尺寸的BGO探测器比NaI(Tl)探测器的探测效率大;在谱处理过程中BGO探测器选择光电峰和第一逃逸峰的和作为特征能窗,而NaI(Tl)探测器以光电峰和第一、第二逃逸峰的和作为特征能窗。探测效率以及伽马光子计数与源距关系的模拟结果显示,长源距探测器晶体几何体积应为短源距探测器晶体体积的8倍左右时,二者才具有相当的测量精度。此模拟结果与实验谱具有较好的一致性,这为碳氧比能谱测井的谱处理奠定了基础。  相似文献   

9.
运用EGSnrcMP蒙特卡罗程序模拟了不同能量单能电子在铝吸收体中的吸收,画出吸收曲线,并将模拟结果与实验结果进行比较.在模拟条件与实验条件一致的情况下,模拟值与实验值得到了很好的符合.本文还通过改变模拟计算的条件,讨论了实验条件对电子吸收规律测量的影响.  相似文献   

10.
海洋激光雷达系统的蒙特卡罗模拟方法研究   总被引:4,自引:0,他引:4  
提出了一种特别适用于海洋激光雷达系统的高效率的蒙特卡罗模拟方法,与传统的模拟方法相比,该方法在模拟过程中充分地利用了辐射传输过程中的概率知识,因此,大大地降低了模拟的方差,提高了计算效率,利用该方法在微机上对一实际雷达系统的模拟结果进行显示,结果表明,该方法在计算效率大为提高的同时仍保证了良好的计算精度,可以满足系统模拟的需要,为在微机上实现海洋激光雷达系统的蒙特卡罗模拟,提供了一种切实可行的方法  相似文献   

11.
建立了一种研究激光刻花轧辊表面形貌的三维模型,该模型采用有限元方法对熔池中的热传导,对流以及熔池表面变化进行了模拟、模拟的表面形貌与实验结果进行了比较,能对实验结果进行较好的解释。  相似文献   

12.
材料表面吸收激光辐照的能量后,产生瞬态温度场进而引起材料表面层的热膨胀,产生超声波.从超声波沿不同方向传播的特性出发,根据激光作用源的特征,建立了热弹性有限元模型,研究了激光和材料相互作用的瞬态过程,包括瞬态温度场和瞬态应力场及其分布.数值模拟结果表明:瞬态温度分布等效于体力源,其中轴向应力将产生纵波,径向应力将产生横波,激光作用在薄金属材料中激发出Lamb波.  相似文献   

13.
对船舶钢板激光弯曲成形过程进行了数值模拟及实验研究。建立了成形过程的三维非线性热力耦合有限元模型,模型中考虑了材料热物性参数和力学性能参数与温度的相关性。计算了弯曲成形过程的温度场及变形场,预测了钢板的最终弯曲角度。实测了激光弯曲成形过程中的温度变化和弯曲变形量。数值模拟结果与实验结果吻合较好。  相似文献   

14.
金属材料中激光产生熔池的数值模拟及应用   总被引:3,自引:0,他引:3  
数值模拟了激光与金属铝相互作用的温度场和流场,求解热传递与层流耦合的PDE方程.数值模拟中选取符合实际光束分布的激光参数,考虑了自然对流、表面张力梯度引起的Marangoni对流和热物理参数依赖于温度的实际情况.针对γ/T<0,γ/T>0,γ/T=0等3种不同的表面张力梯度,计算得到了激光产生熔池的温度场、熔池速度场及熔池的形状.研究结果表明,金属材料内的温度场分布与入射高斯光束光强分布具有相似特征;Marangoni对流是熔池内液体流动的主要形式;γ/T的大小和正负对熔池内流体的运动起决定性作用,可对熔池形状产生很大影响,进而影响激光加工的质量.  相似文献   

15.
利用蒙特卡罗方法对激光心肌血管重建术进行了研究,研究结果表明:心肌组织对激光光子的吸收越强、散射越弱,则激光对心肌组织造成的热损伤就越小,打孔的精确度也越高,孔道灌注缺血心肌组织的能力越强;并且吸收系数的影响最大,散射的各向异性系数的影响最小;因此,能被心肌组织强吸收的激光是心肌血管重建术的理想选择。  相似文献   

16.
利用蒙特卡罗方法对Nd∶YAG激光重建心肌血管进行了模拟研究,研究结果表明波长为1 064 nm的Nd∶YAG激光重建心肌血管时,会对激光孔道周围的心肌组织造成较大范围的热损伤;同时由于心肌组织对Nd∶YAG激光的吸收峰值出现在心外膜和心肌膜之间,因此将会产生“爆炸”效应,并在心外膜形成“喇叭”口;模拟研究的结果和实验结果相符合。  相似文献   

17.
利用蒙特卡罗方法对Nd:YAG激光重建心肌血管进行了模拟研究,研究结果表明波长为1 064 nm的Nd:YAG激光重建心肌血管时,会对激光孔道周围的心肌组织造成较大范围的热损伤;同时由于心肌组织对Nd:YAG激光的吸收峰值出现在心外膜和心肌膜之间,因此将会产生"爆炸"效应,并在心外膜形成"喇叭"口;模拟研究的结果和实验结果相符合.  相似文献   

18.
利用三层心肌组织模型与蒙特卡罗方法,模拟对比研究Nd:YAG激光和倍频Nd:YAG激光的光学参数对心肌组织作用的规律,结果表明,倍频Nd:YAG激光是激光心肌血管重建术可选用的激光器。  相似文献   

19.
激光刻花表面形貌的数值模拟及实验比较   总被引:1,自引:0,他引:1  
建立了一种研究激光刻花轧辊表面形貌的三维模型 .该模型采用有限元方法对熔池中的热传导、对流以及熔池表面变化进行了模拟 .模拟的表面形貌与实验结果进行了比较 ,能对实验结果进行较好的解释  相似文献   

20.
为研究强激光对金属铝靶的毁伤效应及作用规律,进行了不同能量强脉冲激光烧蚀铝靶实验。采用纹影高速照相技术,观察了激光作用铝靶过程中形成的溅射产物和冲击波流场,获得了不同激光能量作用下铝靶的烧蚀特征。建立了强激光烧蚀铝靶的2维计算模型,对脉冲激光作用铝靶过程进行了数值模拟计算,获得了激光脉冲能量对铝靶烧蚀深度的影响规律。对连续强激光大光斑烧蚀铝靶过程进行了数值模拟计算,对比分析了有重力和无重力作用下烧蚀深度以及烧蚀形貌特征。结果表明,在重力作用下烧蚀深度小于无重力作用下的情况,而烧蚀面积大于无重力作用下的烧蚀面积。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号