共查询到17条相似文献,搜索用时 86 毫秒
1.
和声搜索算法是一种启发式优化算法,针对现有改进的和声搜索算法(IHS)的不足,提出了一种改进的自适应和声搜索算法(IAHS).在该算法中,采用自适应的和声保留概率、音调调节概率和音调调节步长产生新解,每次迭代产生多个新解,充分利用和声记忆库的信息.本文用了5个标准的测试函数对该算法进行测试,结果表明该算法(IAHS)有较强的寻优能力和跳出局部最优解的能力. 相似文献
2.
混沌的自适应和声搜索算法 总被引:1,自引:0,他引:1
和声搜索算法是一种启发式优化算法,针对现有改进的和声搜索算法(IHS)的不足,提出了一种混沌自适应和声搜索算法(CAHS)。在该算法中,首先采用混沌策略初始化种群,然后采用自适应的和声保留概率、音调调节概率和音调调节步长产生新解,每次迭代产生多个新解,充分利用和声记忆库的信息。如果算法停滞,则采用混沌变异机制。本文用5个标准的测试函数对该算法进行测试,结果表明该算法(CAHS)比IHS和AHSPSO算法有较强的寻优能力和跳出局部最优解的能力。 相似文献
3.
王巨松 《辽宁师专学报(自然科学版)》2011,13(4):25-29
网络安全性越来越受到人们的关注,因此有必要设计经济、安全的网络.生存性描述了网络对中断的抵御能力,研究考虑生存性的网络设计问题,建立基于生存性的网络优化模型.为了有效地对模型进行求解,设计了基于概率的改进和声搜索算法.最后,通过实验验证模型的合理性和算法的有效性,并通过网络的生存性分析说明了生存性对网络结构和构建成本的影响. 相似文献
4.
为增强和声搜索算法的全局搜索能力,提出一种带有全局交叉的修正和声搜索(MHSgc)算法.MHSgc算法采用多和声记忆库协同创作,应用邻域学习策略进行调整,取代原有的基音调整,从而增加了种群多样性.同时,提出一种全局交叉操作,并融合到MHSgc算法中,防止算法陷入局部最小.针对几个标准函数进行了实验仿真,数值结果表明,上述算法优于文献报道的8种智能算法(HS,IHS,GHS,NGHS,EHS,ITHS,MPSO,RMDE),具有较好的优化潜力. 相似文献
5.
针对航天器最优交会问题,基于C-W模型建立一种燃料时间混合指标,并提出一种改进和声搜索(AHS)算法进行求解.在AHS算法中,提出一种全局均匀学习操作,利用了当前全局最优和声的指导作用,取代了原始和声搜索算法的基音调整操作,增强全局搜索和局部搜索的平衡,并对参数PAR进行了有效的动态调整,以更好适应算法的搜索进程.利用几个最优交会实例对AHS算法的有效性进行了测试,数值结果表明AHS算法能够取得满意的结果,并且优于其他算法. 相似文献
6.
在应急资源调度过程中,资源的筹集问题是其解决的核心问题之一,在应急点较多的情况下,采用穷举法等传统方法求解速度较慢,不能满足应急资源快速准确调度的需要.和声搜索算法是一种启发式全局搜索算法,在许多优化问题得到很好的应用.本文将采用和声搜索算法对此类问题进行求解,并通过实验结果验证其可行性和高效性. 相似文献
7.
一种全局和声搜索算法及在PID控制中的应用 总被引:2,自引:0,他引:2
PID控制受到H∞多性能标准的限制,是一类约束优化问题.引入了一种全局和声搜索算法(GHS)以解决PID控制问题.由于使用了位置更新和小概率的变异,GHS算法具有很强的收敛性和跳出局部最优的能力.通过结合GHS算法和一种罚函数法来处理目标和约束之间的矛盾.实验结果表明,GHS算法在解决PID控制问题上具有很强的解空间开发能力,它所获得的解要好于文献中所报道的解. 相似文献
8.
支持向量机是建立在统计学理论基础上,以结构风险最小为原则的一种机器学习算法,能够很好地解决小样本、高维数、非线性等问题,被广泛地应用于模式识别、函数估计及回归预测等领域.但是支持向量机性能的高低往往取决于其相关参数的正确选择.为提高优化参数的精度及效率,利用和声搜索算法的全局寻优能力,对支持向量机的惩罚参数及核参数进行优化选择.通过4个标准UCI数据集的仿真实验,结果表明本算法不仅减少了搜索时间,而且所获得的参数能大幅提高支持向量机的性能和预测精度,提高了泛化能力. 相似文献
9.
魏峻 《内蒙古师范大学学报(自然科学版)》2015,(3):372-379
鉴于DNA微阵列数据中无关基因和冗余基因对分类精度和效率的影响,提出一种基于全局和声搜索的特征基因选择方法,首先采用ReliefF算法对微阵列基因数据集排序,取排序靠前的N个基因构成初选基因子集,然后利用全局和声搜索算法选择特征基因.两个公共微阵列数据集上的仿真实验表明,该算法全局搜索能力强,分类精度高,能够有效地剔除噪声和冗余基因,是一种有效的特征基因选择算法. 相似文献
10.
为了提高药物管理系统中移动机器人集群调度的速度和精度,建立一种以移动机器人为载体的集群调度模型,并采用离散-连续双映射编码方式进行调度编码。为了提高调度算法解算性能,提出一种融合最优估计优化方法的改进和声搜索算法(IKHS),结合最优迭代和有向搜索进行调度最优搜索,提高算法的计算速度和精度;根据全局最优和声进行自适应带宽调整和全随机交叉变异,扩大算法搜索范围和样本多样性,提高算法搜索和计算全局最优解的能力;同时,使用标准测试函数进行改进算法在连续区间上的验证,效果良好。对比试验结果表明,同一测试条件下,改进算法和对照算法相比具有更加优异的最优解搜索能力,调度结果精确度均有不同程度提高。可见,改进和声算法(IKHS)对于优化自动药物系统调度系统性能具备良好的效果。 相似文献
11.
提出了改进全局和声搜索(IGHS)算法,给出了新的位置更新策略.通过引入新的位置更新策略,可以使算法动态产生解区间,提高了算法对解空间信息开发的能力,避免了因过早收敛而易陷入局部最优的不足.将所提出算法应用于线性系统的鲁棒极点配置中,克服了以往条件数优化计算中需要拟凸转化处理的不足,方便地实现了控制系统的任意极点配置.最后,针对文献中的多输入多输出系统进行仿真对比实验,实验结果表明本方法得到的闭环系统具有更好的鲁棒性. 相似文献
12.
DNA微阵列数据通常含有成千上万个基因,其中含有大量与分类无关的基因和冗余基因,这些基因的存在会严重影响分类精度和效率.针对这一问题,提出一种基于改进的和声搜索算法的特征基因选择方法,首先采用Relief F算法对微阵列基因数据集排序,取排序靠前的N个基因构成初选基因子集,然后再利用改进的和声搜索算法选择特征基因.通过在3个公共微阵列数据集上的仿真实验,结果表明,该算法能够在更少的特征基因情况下达到很高的精度,是一种有效的特征基因选择算法. 相似文献
13.
自适应搜索的改进遗传算法及其应用 总被引:8,自引:0,他引:8
提出了一种具有自适应搜索能力的快速收敛遗传算法。在计算过程中,设计变量的搜索范围依据每代自变量的数学期望和方差自动进行调整,并且通过引入进化策略中的自适应高斯变异算子,对变异算子进行改进,加速了算法的收敛性。为了验证算法的可行性和鲁棒性,对一个高维多峰函数的极小值搜索问题进行了求解,并将算法进一步应用于离心叶轮的形状优化问题。计算结果表明,该算法克服了传统遗传算法中设计区间的给定具有一定盲目性的缺陷,在收敛性和鲁棒性方面均优于传统的实数编码遗传算法。 相似文献
14.
为提高和声搜索算法的优化性能,提出一种多子群混合和声搜索(MHHS)算法.该算法基于每个和声到最好和声的距离进行排序,并依据排序结果分层,每一层作为一个独立的子群.不同的子群融合不同的差分调整策略,以拓宽搜索范围;同时建立通信机制,使各子群以一定规格进行信息交流,促进子群的协同进化.实验仿真表明,本文算法在寻优精度、收敛性和鲁棒性方面均优于文献中报道的HS,EHS,NGHS,MPSO,CLPSO,DE,ODE和IABC算法. 相似文献
15.
为了提高和声搜索算法(HSA)的收敛速度和准确度,设计了一个基于动态调节概率机制的动态和声搜索算法(DHSA),并将其应用于旅行商问题(TSP)求解.为了验证DHSA的有效性,选取TSP数据集bayg29和ch150,通过Matlab软件将遗传算法(GA)、HSA与DHSA进行仿真实验.实验结果表明,DHSA收敛精度最... 相似文献
16.
为改善和声搜索算法易陷入局部最优的不足,提出了一种混沌反向学习和声搜索(COLHS)算法.基于聚集和发散思想,对算法陷入局部最优和停滞状态进行初步预判断,并根据预判断的结果融合混沌扰动策略和反向学习,利用了logistic混沌序列的遍历性和反向学习的空间可扩展性.此外,利用和声记忆库的历史信息定义更新因子和进化因子,自适应地调整参数基音调整概率(PAR)和基音调整步长(BW),平衡算法的聚集和发散.数值结果表明,COLHS算法优于HS算法及最近文献报道的8种改进的HS算法. 相似文献
17.
提出了一种改进的和声搜索算法并应用到聚类分析中.首先,将状态反馈机制引入到和声搜索算法中,通过判断和声记忆库中"最优"和声和"最差"和声之间的差异,来动态调整和声记忆库考虑概率和移动步长,使算法能够快速地收敛到全局最优解.通过更新和声向量中精度变量对应的聚类中心来最小化目标函数值,获得数据样本的最优划分.其次,提出了一种数据样本真实聚类中心数的确定方法,当输入样本数大于真实聚类中心数时,通过计算能够自动地确定数据样本真实聚类中心数目.最后,应用4种性能指标来比较所提算法与蚁群聚类算法和原始和声搜索聚类算法的性能.结果表明,所提算法的性能优于另两种算法. 相似文献