首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
地层蠕变效应是引起套管损坏的主要原因之一,在非均匀地应力下,如何计算蠕变地层作用于套管上的最终稳定载荷是一个非常困难的问题.将套管看成弹性体,把地层视为无穷大的粘弹性体,建立了非均匀地应力条件下蠕变地层的开尔文模型本构方程,运用应力分析法和拉普拉斯变换法,求解出非均匀地应力条件下蠕变地层套管的载荷,并分析了套管载荷的分布.结果表明,当套管刚度较大时,经过足够长的时间,套管载荷趋于一个稳定的最大载荷分布,且其值接近于完全弹性解.  相似文献   

2.
根据弯曲梁理论,建立了套管柱受非均布外挤压力作用的力学模型;并应用解超静定问题的正则方程和力法准则对该力学模型进行求解,得到了在非均布外挤压力作用下套管圆周上的弯矩、剪力、轴力、应力和位移的分布规律。计算表明,在非均布外挤压力作用下,套管抗挤毁强度大大降低。该力学模型不仅可以解释深井套管挤毁机理,而且可以改进深井套管抗挤强度设计。  相似文献   

3.
蠕变地层中套管载荷与套管变形是两个相互作用的因素,给出了非均匀地应力下蠕变地层套管载荷和变形的解析解。地层蠕变效应是引起各类套管大量损坏的主要原因之一,在非均匀地应力下,如何计算蠕变地层作用于套管上的最终稳定载荷和套管最终变形,这是两个很难解决的课题。将套管看成弹性体,把地层视为无穷大的黏弹性体,利用非均匀地应力条件下蠕变地层的开尔文模型本构关系,运用半逆解法和拉普拉斯变换法,完善了非均匀地应力条件下蠕变地层套管载荷的解析解,进而求出了套管变形的解析解;研究了非均匀地应力下蠕变地层中套管载荷的分布规律和变形的影响因素。结论对蠕变地层中套管的选用有重要的参考价值。  相似文献   

4.
套管-水泥环-地层系统界面的密封失效,将导致高压气体上窜至井口而引起环空带压,给油气田的勘探开发带来安全、环保隐患。通过研究直井水泥环在各种应力状态下的变形破坏特征,揭示了水泥环力学特性对其水力胶结失效的影响规律,发现较高的内压下,在水平最小地应力方位水泥环内壁有进入塑性的可能性;在45°方位上水泥环内壁有发生剪切滑移破坏,造成水力胶结失效的可能性;但是水泥环产生拉伸破坏的可能性较小;所以水泥环内壁是危险面,为了防止水泥环失效,水泥环应该具有低模量,高强度和高泊松比的特性。  相似文献   

5.
套管抗挤强度统计分析研究   总被引:4,自引:0,他引:4  
针对美国石油协会的套管抗挤强度计算公式与实测套管挤毁压力差距较大的问题,利用统计学方法,详细分析了套管实物挤毁试验检测数据,得到了各因素影响套管抗挤强度的定量指标.研究表明,套管抗挤强度主要由径厚比决定;套管计算屈服外压和失稳外压等其他参数及其交互作用对套管的抗挤强度也有显著影响;套管外径和壁厚数据的变异系数比外径不圆度和壁厚不均度对套管抗挤强度的影响更显著.最后给出了套管抗挤强度统计计算公式,为生产厂和用户提供了预测套管抗挤强度的简单实用的计算方法.  相似文献   

6.
地层蠕变效应是引起套管损坏的主要原因之一,在非均匀地应力下,如何计算蠕变地层作用于套管上的最终稳定载荷是一个非常困难的问题.将套管看成弹性体,把地层视为无穷大的粘弹性体,建立了非均匀地应力条件下蠕变地层的开尔文模型本构方程,运用应力分析法和拉普拉斯变换法,求解出非均匀地应力条件下蠕变地层套管的载荷,并分析了套管载荷的分布.结果表明,当套管刚度较大时,经过足够长的时间,套管载荷趋于一个稳定的最大载荷分布,且其值接近于完全弹性解.  相似文献   

7.
为提高套管挤毁压力预测精度,应用统计方法对213根套管全尺寸挤毁试验数据进行了方差分析,研究了外径不圆度、壁厚不均度、残余应力等因素对套管抗挤强度的影响。分析结果表明,径厚比、屈服强度是套管抗挤强度的主要因素,不圆度、壁厚不均度、残余应力等因素对套管抗挤强度的影响呈随机性分布。利用有限元方法对外径不圆度、壁厚不均度和残余应力的不同位置组合进行了模拟分析。结果表明,数值相同的外径不圆度、壁厚不均度及平均残余应力组合不同时,套管的挤毁压力相差很大。最后提出了一个套管抗挤强度计算公式,计算简单,精度可满足工程要求。  相似文献   

8.
运用有限单元分析方法详细考察了承受均匀外压力的样本油套在不同椭圆度,不同壁厚不均(或称偏心度)以及不同椭圆度和壁厚不均组合等初台几何缺陷的情况下的应力变化及其分布,并作出相应的初始几何缺陷与应力变化的曲线。  相似文献   

9.
随着复杂结构井在石油钻采中的广泛应用,由腐蚀缺陷引起的套管挤毁失效问题日益突出,导致修井周期增大,开采成本增加,成为制约钻采效益的主要因素之一。针对上述问题,将GB/T 19624—2004含缺陷压力容器评定标准运用到含腐蚀缺陷套管的抗挤强度分析中,将不同形貌的套管腐蚀缺陷规则化处理。通过理论与仿真对比验证,建立了精确的含腐蚀缺陷套管有限元模型。利用ANSYS研究了不同腐蚀缺陷套管的抗挤毁强度。研究结果表明:在椭球型腐蚀缺陷长轴长度、短轴长度、缺陷深度和穿透型缺陷长度、宽度5个结构参数中,椭球型缺陷深度、短轴长度和穿透型缺陷的宽度是套管强度的最敏感参数。因此套管的抗挤强度分析应着重考虑腐蚀缺陷的影响。针对设计和使用的每种套管,都应考虑可预见的腐蚀缺陷进行精细化数值计算,以确保其安全工作。  相似文献   

10.
采用Abaqus软件,通过有限元模拟分析方法,按照月牙形磨损模型,对我国深井、超深井中广泛使用的140 ksi(965 kPa)钢级Φ244.5 mm×11.99 mm、110 ksi(758 kPa)钢级Φ339.7 mm×12.19 mm和Φ244.5 mm×11.99 mm等3种高抗挤套管在0到70%之间不同磨损率下的挤毁失效行为和挤毁强度变化规律进行了分析,得到了不同磨损率下套管的挤毁失效类型和挤毁强度数据。研究发现磨损在改变套管几何形状的同时,也使套管的挤毁失效行为发生了变化,从而使其剩余挤毁强度值的计算变得复杂。原本为塑性挤毁的Φ244.5 mm×11.99 mm110 ksi(758 kPa)套管在磨损后转变为以弹性失稳为主;原本为过渡挤毁的Φ244.5 mm×11.99 mm140 ksi(965 kPa)套管,当磨损率小于50%时,其挤毁失效类型为过渡挤毁,当磨损率大于50%时,其挤毁失效类型转变为弹性失稳;原本为弹性挤毁的Φ339.7 mm×12.19 mm110 ksi(758 kPa)套管在磨损后依然为弹性挤毁,但磨损加剧了其结构的不稳定。3种套管磨损后的剩余挤毁强度都低于原本失效模式下的挤毁强度值。  相似文献   

11.
蠕变地层套管等效破坏载荷分析   总被引:3,自引:1,他引:3  
蠕变地层套管损坏的主要原因是套管外壁受到蠕变地层的非均匀载荷作用,套管本体抵抗非均匀载荷能力远远低于套管抗挤强度而产生缩径变形。通过分析蠕变地层套管非均匀载荷的分布形式,并考虑在该非均匀载荷作用下套管的强度特征及固井水泥环力学性能对套管抗非均匀载荷影响的基础上,采用有限单元法,分析了蠕变地层套管本体、固井套管组合体的等效破坏载荷。结果表明,非均匀载荷作用下套管的抗载能力迅速下降,提高固井水泥性能,切实保证固井质量将显著提高套管抵抗非均匀载荷的能力。  相似文献   

12.
基于套管的受力分析,提出了在非均匀外载荷作用下套管应力分析的解析方法,以及简化的套管抗非均匀外载荷作用能力估算的新公式.以目前广泛应用的J55油套管(139.7 mm×8 mm)为例,分析了套管抗外载荷挤压能力随外载荷不均匀性的变化.结果表明,套管抗外载荷挤压能力随外载荷不均匀性的增加迅速降低.按照该公式计算的结果与应用有限元方法所得到的结果误差在15%以内,满足工程要求.说明本文提出的解析方法不仅简便、直观,而且可靠.  相似文献   

13.
在水平井或大斜度井段,套管和测井仪器由于重力作用通常存在向下偏心的现象,这会对方位声波固井质量评价仪(azimuthally acoustic bond tool, AABT)的测量响应造成干扰,使其不能有效判别水泥窜槽方位。利用三维有限差分算法分别模拟了仪器偏心和套管偏心情况下方位声波固井质量评价仪的测量响应,分析了偏心距离与各方位接收波形幅度之间的关系,并在此基础上提出了一种水泥窜槽方位测量校正方法。数值模拟结果表明:仪器偏心对AABT测量响应影响很大,难以从首波幅度分布曲线中直接获取水泥窜槽的方位。基于仪器偏心时在自由套管条件下的响应特征,可以实现对仪器偏心效应的校正。从校正后的首波幅度分布曲线中,可以准确地获得水泥窜槽的方位。套管偏心对AABT测量响应影响很小,通常可以忽略。研究成果为之后AABT实际资料的处理奠定了理论基础。  相似文献   

14.
根据声波在介质中的传播理论和换能器的声学特性,对在套管井中仪器处于不同偏心情况下的超声回波进行了模拟,研究了偏心对超声回波的影响,并进行了实验验证.数字模拟和实验结果表明:仪器偏心不仅会引起回波信号幅度的变化,而且会导致频谱的改变.当偏心大于4mm时,对回波的影响比较明显;为了保证套管井测井资料的可靠性,仪器偏心应小于3.5mm.  相似文献   

15.
中原油田大部分油水井套管的损坏发生在盐膏层段,造成套管损坏的根本原因是盐膏层的蠕变.通过盐岩的三轴蠕变实验,建立盐岩变形的本构关系;通过数值模拟计算岩盐蠕变的速度、位移及作用在套管上的非均匀外挤力.  相似文献   

16.
对高填方下台阶式加筋土挡墙筋带应力进行了现场实测研究分析.发现筋带上应力的分布情况分为3种,其一:筋带上全部分布着拉应力,其二:筋带上全部分布着压应力,其三:筋带上既分布着拉应力,又分布着压应力,这些和通常的加筋土挡墙所测的结果不同.究其原因主要是该实体工程的筋带为钢筋混凝土串联块,属非柔性材料,而一般加筋土挡墙的筋带为柔性材料,但是同样可以用筋带上的最大应力所在位置确定墙后填土的潜在破裂面线.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号