首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 109 毫秒
1.
利用Cayley公式求解递推关系方程,给出了一组简单图S(p,n,p),S(p,n,q)的生成树数的计算公式.  相似文献   

2.
连通图的生成树是该图的极小连通生成子图.本文通过Cayley公式及求解递推关系方程,分别求出了三类简单外平面图A_m,B_m和Z_m的生成树的棵数,给出了它们的递推关系式及通项表达式.  相似文献   

3.
连通图的生成树是该图的极小连通生成图。本文通过Cayley公式及求解递推关系方程,分别求出了三类简单外平面图An,Bn和Zn的生成树的棵数,给出了它们的递推关系式及通项表达式。  相似文献   

4.
连通图的生成树是指该图的极小连通生成子图,本文在Cayley公式的基础上,给出每一树扩图类Pn(t)、K1,n-1(t)、Tn(a1,a2,…,ak;t)、Tn,k(t)中的图的生成树数相同.  相似文献   

5.
连通图的生成树是指该图的极小连通生成子图.在Cayley公式的基础上,给出树扩图生成树数的上下界.  相似文献   

6.
计算一个图的生成树数问题在数学、物理和化学等很多领域都被广泛的研究.该文考虑具有柱面条件的一类网格图的生成树数,给出了生成树数的显式表达式.  相似文献   

7.
若干图类的生成树数   总被引:5,自引:4,他引:5  
连通图的生成树是该图的极小连通生成子图。本文求出了所有梯形图、扇形图和轮形图生成树的棵数,分别给出了它们的递推关系式和通项表达式.  相似文献   

8.
连通图的生成树是指该图的极小连通生成子图.通过Cayley公式、递推关系式及伪类环图与伪类环图生成树数之间的关系式给出伪类环图-Sn,-An的生成树数.  相似文献   

9.
设t(m,n)和t(m,n)分别是平面m×n格图生成树和对称生成树的数目,从而给出了t(3,n)和t(3,n)的闭公式以及t(m,n)递推式阶的估计.  相似文献   

10.
从组合数学的角度研究生成树的计数.先利用容斥原理,得到3个组合恒等式,再从组合数学的角度出发,并利用数学归纳法给出了Cayley's公式的又一简便证明.该计数方法将图的计数问题与组合数学中的经典问题联系起来,更好地揭示了生成树计数的本质.  相似文献   

11.
利用图G的标定技巧、矩阵和行列式运算、补生成树矩阵定理等理论,研究了当G是基于圈的多重完全图时,其补图类Kn-G的生成树数目的计数问题.给出基于圈的多重完全图相关图Kn-G的一些特殊情况时生成树数目具体计数公式.  相似文献   

12.
图的支撑树数是图的重要的不变量,也是网络可靠性的重要量度.循环图是一个重要的图类,可应用于局域网和分布系统的设计中.对有固定步长的循环图,其支撑树数已得到了研究.本文考虑有非固定步长的无向循环图Cpn(a1,a2-,…,ak,q1n,q2n,…,qmn),这里a1,a2,…,ak,q2,q2,…,qm,n和p都是正整数,a1≤a2≤…≤ak≤n/2,q1≤q2≤…≤qm≤p/2,且n是可变化的,因而有些步长并非固定.给出其支撑树数的一个公式,并得到其渐近性态和常数系数的线性递归关系.  相似文献   

13.
完全二分图的生成树的个数   总被引:3,自引:0,他引:3  
给出了生成子图的定义.证明了生成子图的构造定理和计数定理.提出了任意G(p,q)的生成树的计数方法和构造方法.介绍了完全二分图K3,3的生成树的计数和构造.  相似文献   

14.
就给定的整数s1,s2,…,sk,1≤s1≤s2≤…≤sk,给出了一种简单的方法来计算Cn^21,s2,…,sk中生成树个数的渐近性质,证明了该渐近性可以归结为求解一个次数为2sk-2的多项式,并将这种计算方法应用到若干个循环图作为例子.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号