共查询到20条相似文献,搜索用时 62 毫秒
1.
目的 为了提高工具痕迹检验鉴定结果的稳定性和可靠性,提出了一种基于深度学习的方法。方法 使用基于迁移学习的思想与深度卷积神经网络VGG16模型的机器学习算法,对8个断线钳、10个钢丝钳和10个螺丝刀制作的2 800个工具痕迹的2D图像数据集,进行单独和综合训练学习。结果 训练后的模型对测试数据进行识别,对于在精确定位工具刃口条件下制作的钢丝钳剪切痕迹和螺丝刀线条痕迹样本可达到98%以上的准确率,对于工具刃口剪切位置误差为1.5 mm以内的条件下制作的断线钳剪切痕迹样本可达88.3%的准确率,对3种工具的综合数据集的综合识别率达到95.5%的准确率。结论 实验结果表明,不需要预先对工具痕迹做特征工程处理,就能够达到较高的识别率。 相似文献
2.
在公共安全检查领域中,研究毫米波图像目标检测的快速性和精准性的方法具有非常重要的实际应用价值。提出了基于Faster R-CNN深度学习的方法检测隐藏在人体上的危险物品。该方法将区域建议网络(region proposal network,RPN)和VGG16训练卷积神经网络模型相结合,接着通过在线难例挖掘(online hard example mining,OHEM)技术优化训练所提出的网络模型,从而构建了面向毫米波图像目标检测的深度卷积神经网络。实验结果证明所提的方法能高效地检测毫米波图像中的危险物品,并且目标检测的平均精度高达约94.66%,检测速度约为6帧/s,同时对毫米波安检系统的智能化发展有着极其重要的参考价值。 相似文献
3.
4.
为有效识别沥青路面病害类别,将VGG卷积神经网络引入沥青路面病害识别中. 根据VGG模型随着卷积核深度的加深可获得图片更深层次特征的特点,将VGG模型最后一层卷积核的卷积深度加深,得到改进型VGG模型,并与原始VGG模型进行比较. 结果表明:改进型VGG模型每步用时278ms,相比于原始模型每步用时258ms略有增加,而病害识别精度进一步提升了1.36%,对龟裂、松散等复杂裂缝分别提高了1.12%、0.84%. 可见,VGG模型可有效识别路面病害,将其适当改进后效果更佳,对诸如松散、龟裂等复杂路面病害可做到精确识别,能及时、有效监测路面破损状况. 相似文献
5.
相较于传统烟火、烟雾传感器检测方法,基于卷积神经网络算法的烟火检测具有更高的检测精度和效率,并能提供火灾现场全局/局部详细信息。本文提出基于改进YOLOv3算法的烟火识别,应用高斯参数设计损失函数从而建立YOLOv3边界框模型,可预测边界框定位不确定性,减少负样本;为充分利用图像局部特征信息对网络结构进行改进,以实际烟火现场图片为研究对象,完成烟火识别过程计算。利用不同拍摄角度、光照条件自制火焰和烟雾数据集进行测试,结果表明,与传统YOLOv3对比,本文提出的改进YOLOv3算法平均精度提高了4.2%。研究方法将有助于提升智能烟火预警、人员救助和险情跟踪作业水平,最终提升事故灾害的应急能力。 相似文献
6.
为了提高力触觉足迹识别的准确率,提出一种基于空间聚合加权注意力机制的足迹识别算法.首先,采用压力足迹采集器采集并构建一个包含100人2 000幅力触觉足迹图像的数据集;然后,采用VGG19卷积神经网络预训练模型提取特征,为获取特征图中足迹压力分布感兴趣区域,设计一种空间聚合加权模块(SAWM),该模块专注高响应区域从而提取足迹中显著区域局部特征,并与输入特征图加权融合,保留显著性特征,抑制不重要特征;最后输出的特征经过平均池化在全连接层实现力触觉足迹的识别.试验结果表明,所提算法准确率达到了91.20%,优于其他注意力机制算法以及传统的足迹识别算法.采用空间聚合加权注意力机制网络模型能够有效进行足迹识别,为身份识别提供技术支撑. 相似文献
7.
提出了一种新颖的细粒度图像分类算法。首先从神经网络VGG 16中提取出卷积特征后进行特征筛选,得到选择性卷积特征;然后利用最大后验高斯混合模型对特征进行分类,从而解决细粒度图像分类问题。造成细粒度图像分类困难的主要原因是类内差异和类间差异。利用卷积特征对图像具有更细致的描述能力,可以有效地减小类内差异;同时,对从VGG 16中得到的卷积特征进行筛选,能够较大程度地摆脱背景干扰,从而提高类间差异。最后,采用基于最大后验的高斯混合模型对这些选择性卷积特征进行分类。实验结果表明,本文算法不仅克服了两种差异带来的问题,还解决了传统高斯混合模型缺少大量实验数据的困难。在目前流行的5种细粒度图像数据集上,本文算法都有更好的分类效果。 相似文献
8.
基于改进卷积神经网络的苹果叶部病害识别 总被引:2,自引:0,他引:2
针对苹果病害叶片图像病斑区域较小导致的传统卷积神经网络不能准确快速识别的问题,提出基于改进卷积神经网络的苹果叶部病害识别的网络模型.首先,将VGG16网络模型从ImageNet数据集上学习到的先验知识迁移到苹果病害叶片数据集上;然后,在瓶颈层后采用选择性核(selective kernel,简称SK)卷积模块;最后,使用全局平均池化代替全连接层.实验结果表明:与其他传统网络模型相比,该模型能更准确快速捕获苹果病害叶片上微小的病斑. 相似文献
9.
为了准确快速地识别原煤中的煤和矸石,基于机器视觉的方式,采取经典卷积神经网络模型对煤和矸石图像进行识别分类;利用在以实验室环境下采集的小批量煤和矸石图像数据,运用数据增强技术扩充数据集,在深度学习框架中搭建各种经典卷积神经网络模型,对采集的数据集进行训练、验证和测试,获得各经典网络的训练准确率和损失函数曲线,并结合训练... 相似文献
10.
随着消费观念的升级,人们对饮食健康越来越重视,因此,食品图像识别成为众多领域研究的热点.针对传统食品图像识别方法提取特征能力差、准确率差等问题,采用Google团队发布的卷积神经网络模型——Inception_ResNet_V2模型对食品图像进行识别和分类,该模型曾经在图像分类测试中实现了当下最好的成绩.在Food-1... 相似文献
11.
为了进一步提高三维模型的识别精度,提出了一种基于深度卷积神经网络的三维模型识别方法。将点云数据通过占用网格规范化计算转化为二值3D体素矩阵,通过附加正则化项的随机梯度下降算法提取体素矩阵的特征,再通过共享权重的旋转增强对训练集进行数据增广并以此对模型标签进行预测。实验结果表明,该算法在公开数据集ModelNet40及悉尼城市模型数据集上的识别精度均达到85%左右。与基于同类机器学习的三维模型识别算法相比,在相同训练数据集上该方法网络训练时间短,在相同测试数据集上模型识别准确率高,检索速度快。提出的体素占用网格模型的深度卷积神经网络,可以实现三维点云模型数据集及规范化体素模型数据集的识别和分类工作。 相似文献
12.
《天津理工大学学报》2017,(3):12-15
农产品检测技术一直以来都是农业领域研究的热点问题,但以往的识别的错误率都居高不下,该文采用了基于有深度学习机制的卷积神经网络方法来提高识别率.首先对采集到的图像进行预处理得到规范化的二值化图像,再利用Matlab软件进行神经网络的建模,利用其网络自学习能力进行训练与测试,通过仿真验证卷积神经网络对辣椒图像的精确识别率.并与传统BP神经网络进行比较,表明其具有很好的鲁棒性和泛化能力. 相似文献
13.
《华东师范大学学报(自然科学版)》2017,(5)
自动问答是自然语言处理领域中的一个研究热点,自动问答系统能够用简短、精确的答案直接回答用户提出的问题,给用户提供更加精确的信息服务.自动问答系统中需解决两个关键问题:一是实现自然语言问句及答案的语义表示,另一个是实现问句及答案间的语义匹配.卷积神经网络是一种经典的深层网络结构,近年来卷积神经网络在自然语言处理领域表现出强大的语言表示能力,被广泛应用于自动问答领域中.本文对基于卷积神经网络的自动问答技术进行了梳理和总结,从语义表示和语义匹配两个主要角度分别对面向知识库和面向文本的问答技术进行了归纳,并指出了当前的研究难点. 相似文献
14.
为了提高人脸年龄分类的精度并且减少年龄分类过程所需的时间,提出了由微调深度卷积神经网络(FDCNN)和概率协同表示分类器(PCRC)构成的深度混合模型对人脸年龄分类的方法.首先,在IMDB数据集上将VGG-Face模型微调,得到一个新的深度卷积神经网络模型;然后,用该模型提取人脸图像的年龄特征,并将其送到基于概率协同表示的分类器进行年龄分类;最后,在FG-NET,MORPH和CACD数据集上对由FDCNN和PCRC构成的混合深度模型进行验证.从验证结果可知:PCRC比支持向量机(SVM)平均分类精度高出4.6%,并且对微调的深度模型倒数第二激活层输出的特征进行分类能取得更高的分类精度;与CA-SVR,DeepRank和DeepRank+相比,FDCNN和PCRC构成的混合深度模型的分类平均绝对误差分别低1.24,0.14和0.06;与由DCNN和SVM构成的分类模型相比,该混合深度模型的年龄分类精度高出3.6%.通过与VGG-Face模型各层运算时间分布对比可知该混合深度模型的分类时间大幅减少,因此混合深度卷积神经网络能很好地进行人脸年龄分类. 相似文献
15.
针对卷积神经网络(CNN)在交通标志识别过程中出现的梯度弥散而引起的识别率低的问题,给出了基于改进CNN结构的交通标志识别方法.实验结果表明:该方法能够有效提高识别精度,防止梯度弥散. 相似文献
16.
利用传统的基于节点连接的道路网络模型来表达真实世界中的道路网络,其存在的缺陷越来越突出,大大降低了导航系统的鲁棒性。为了消除这些缺陷,首次提出一个新的道路网络模型,即基于虚拟节点连接的道路网络模型,其虚拟节点是汇交路段的各个端点所围成的区域,具有真实道路路口的形状,与传统模型相比,该模型更能表达真实世界道路网络中的交通流,所以它能更好地满足地图匹配理论要求。另外,该模型能很好的表达真实道路路口参数,所以它在交通规划,交通管理和交通流模拟中都有着十分广阔的应用前景。 相似文献
17.
传统人脸识别方法手工设计特征过程复杂、识别率较低,对于开集人脸识别通用深度学习分类模型特征判别能力较弱。针对这两方面的不足,提出了一种以分类损失与中心损失相结合作为模型训练监督信号的深度卷积神经网络。首先,利用构建的应用场景数据集优调从公共数据集获得初始化参数的深度人脸识别模型,解决训练数据过小和数据分布差异问题,同时提高模型训练速度;然后,以传统损失函数和新的中心损失作为迁移学习过程中的监督信号,使得类内聚合、类间分散,提高模型输出人脸特征的判别能力;最后,对人脸特征进行主成分分析,进一步去除冗余特征,降低特征复杂度,提高人脸识别准确率。实验结果表明,与传统人脸识别算法相比该算法可以自动进行特征提取,并且相对于通用深度学习分类模型该算法通过度量学习使特征表示更具判别力。在自建测试集和LFW、YouTube Faces标准测试集上都取得了较高的识别率。 相似文献
18.
基于低复杂度卷积神经网络的星载SAR舰船检测 总被引:1,自引:0,他引:1
星载SAR(合成孔径雷达)舰船检测广泛应用于海上救援和国土安全防护等领域.鉴于传统的检测方法仍存在虚警率高等缺点,本文将具有强大表征能力的卷积神经网络(CNN)引入到星载SAR舰船检测中,面向SAR舰船检测的精准快速的需求,提出了基于低复杂度CNN的星载SAR舰船检测算法.算法结合星载SAR图像的特点,利用ROI提取方法实现目标粗提取,得到可疑目标切片及其对应的位置信息;通过构建的低复杂度CNN对所有的可疑目标切片进行精确分类,确定舰船目标,从而实现舰船目标检测.实验测试结果表明:本文提出的算法可以实现精准的星载SAR舰船检测;与传统双参数CFAR目标检测和基于现有深度网络框架(LeNet、GoogLeNet)的检测算法相比,该算法检测性能更好、检测时间更短,可有效降低检测漏检率和虚警率. 相似文献
19.
传统人体行为识别基于人工设计特征方法涉及的环节多,具有时间开销大,算法难以整体调优的缺点。以深度视频为研究对象,构建了3维卷积深度神经网络自动学习人体行为的时空特征,使用Softmax分类器进行人体行为的分类识别。实验结果表明,提出的方法能够有效提取人体行为的潜在特征,不但在MSR-Action3D数据集上能够获得与当前最好方法一致的识别效果,在UTKinect-Action3D数据集也能够获得与基准项目相当的识别效果。本方法的优势是不需要人工提取特征,特征提取和分类识别构成一个端到端的完整闭环系统,方法更加简单。同时,研究方法也验证了深度卷积神经网络模型具有良好的泛化性能,使用MSR-Action3D数据集训练的模型直接应用于UTKinect-Action3D数据集上行为的分类识别,同样获得了良好的识别效果。 相似文献
20.
针对同步物流系统中信息过剩问题,提出了基于神经网络专家系统的信息智能分拣方案.根据功能需求进行了系统模型结构设计和软件结构设计,对关键模块设计原理和部分代码进行说明,并给出了一个应用实例进行了验证. 相似文献