首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Mammalian centromeres are not defined by a consensus DNA sequence. In all eukaryotes a hallmark of functional centromeres--both normal ones and those formed aberrantly at atypical loci--is the accumulation of centromere protein A (CENP-A), a histone variant that replaces H3 in centromeric nucleosomes. Here we show using deuterium exchange/mass spectrometry coupled with hydrodynamic measures that CENP-A and histone H4 form sub-nucleosomal tetramers that are more compact and conformationally more rigid than the corresponding tetramers of histones H3 and H4. Substitution into histone H3 of the domain of CENP-A responsible for compaction is sufficient to direct it to centromeres. Thus, the centromere-targeting domain of CENP-A confers a unique structural rigidity to the nucleosomes into which it assembles, and is likely to have a role in maintaining centromere identity.  相似文献   

2.
Zhou Z  Feng H  Zhou BR  Ghirlando R  Hu K  Zwolak A  Miller Jenkins LM  Xiao H  Tjandra N  Wu C  Bai Y 《Nature》2011,472(7342):234-237
The centromere is a unique chromosomal locus that ensures accurate segregation of chromosomes during cell division by directing the assembly of a multiprotein complex, the kinetochore. The centromere is marked by a conserved variant of conventional histone H3 termed CenH3 or CENP-A (ref. 2). A conserved motif of CenH3, the CATD, defined by loop 1 and helix 2 of the histone fold, is necessary and sufficient for specifying centromere functions of CenH3 (refs 3, 4). The structural basis of this specification is of particular interest. Yeast Scm3 and human HJURP are conserved non-histone proteins that interact physically with the (CenH3-H4)(2) heterotetramer and are required for the deposition of CenH3 at centromeres in vivo. Here we have elucidated the structural basis for recognition of budding yeast (Saccharomyces cerevisiae) CenH3 (called Cse4) by Scm3. We solved the structure of the Cse4-binding domain (CBD) of Scm3 in complex with Cse4 and H4 in a single chain model. An α-helix and an irregular loop at the conserved amino terminus and a shorter α-helix at the carboxy terminus of Scm3(CBD) wraps around the Cse4-H4 dimer. Four Cse4-specific residues in the N-terminal region of helix 2 are sufficient for specific recognition by conserved and functionally important residues in the N-terminal helix of Scm3 through formation of a hydrophobic cluster. Scm3(CBD) induces major conformational changes and sterically occludes DNA-binding sites in the structure of Cse4 and H4. These findings have implications for the assembly and architecture of the centromeric nucleosome.  相似文献   

3.
核小体是构成真核生物染色质的基本结构单位,体内研究核小体及染色质结构受到诸多因素限制,体外重构核小体结构是研究与核小体及染色质结构相关课题的一种重要的方法手段.实验将ES1,CS1以及601DNA序列克隆到载体中,通过PCR大量扩增回收得到目的DNA条带,表达纯化了4种组蛋白且装配成组蛋白八聚体,在盐透析的条件下组装形成核小体结构,利用EB染色以及Biotin标记的方法分析检测了形成核小体的效率.结果显示,在盐透析的条件下,可以有效的组装形成核小体结构,而且随着组蛋白八聚体与DNA的比例增加,核小体的形成效率显著提高.本实验为核小体定位、染色质重塑及组蛋白变体等表观遗传学以及结构生物学领域的研究奠定一定的基础.  相似文献   

4.
Loppin B  Bonnefoy E  Anselme C  Laurençon A  Karr TL  Couble P 《Nature》2005,437(7063):1386-1390
In sexually reproducing animals, a crucial step in zygote formation is the decondensation of the fertilizing sperm nucleus into a DNA replication-competent male pronucleus. Genome-wide nucleosome assembly on paternal DNA implies the replacement of sperm chromosomal proteins, such as protamines, by maternally provided histones. This fundamental process is specifically impaired in sésame (ssm), a unique Drosophila maternal effect mutant that prevents male pronucleus formation. Here we show that ssm is a point mutation in the Hira gene, thus demonstrating that the histone chaperone protein HIRA is required for nucleosome assembly during sperm nucleus decondensation. In vertebrates, HIRA has recently been shown to be critical for a nucleosome assembly pathway independent of DNA synthesis that specifically involves the H3.3 histone variant. We also show that nucleosomes containing H3.3, and not H3, are specifically assembled in paternal Drosophila chromatin before the first round of DNA replication. The exclusive marking of paternal chromosomes with H3.3 represents a primary epigenetic distinction between parental genomes in the zygote, and underlines an important consequence of the critical and highly specialized function of HIRA at fertilization.  相似文献   

5.
The structure of DNA in the nucleosome core   总被引:24,自引:0,他引:24  
Richmond TJ  Davey CA 《Nature》2003,423(6936):145-150
The 1.9-A-resolution crystal structure of the nucleosome core particle containing 147 DNA base pairs reveals the conformation of nucleosomal DNA with unprecedented accuracy. The DNA structure is remarkably different from that in oligonucleotides and non-histone protein-DNA complexes. The DNA base-pair-step geometry has, overall, twice the curvature necessary to accommodate the DNA superhelical path in the nucleosome. DNA segments bent into the minor groove are either kinked or alternately shifted. The unusual DNA conformational parameters induced by the binding of histone protein have implications for sequence-dependent protein recognition and nucleosome positioning and mobility. Comparison of the 147-base-pair structure with two 146-base-pair structures reveals alterations in DNA twist that are evidently common in bulk chromatin, and which are of probable importance for chromatin fibre formation and chromatin remodelling.  相似文献   

6.
7.
A role for Saccharomyces cerevisiae histone H2A in DNA repair   总被引:11,自引:0,他引:11  
Downs JA  Lowndes NF  Jackson SP 《Nature》2000,408(6815):1001-1004
  相似文献   

8.
9.
R T Simpson 《Nature》1990,343(6256):387-389
Positioning of nucleosomes has been proposed as one mechanism whereby the activity of DNA is regulated: cis-acting elements located in linker DNA might be more accessible for interaction with trans-acting protein factors than they would be if they were directly associated with histones in nucleosome core particles. The eleven base pairs constituting the autonomously replicating sequence (ARS) of the high-copy-number TRP1ARS1 plasmid of Saccharomyces cerevisiae are located in a linker region near the edge of a positioned nucleosome and form an origin of replication. Could nucleosome positioning render the ARS accessible for interaction with the proteins necessary for its function? I have tested this hypothesis by making deletions and an insertion to move the ARS into the nucleosome DNA and then examining the effects on ARS function. There is a marked decrease in copy number when the ARS is moved into the central DNA region of the nucleosome core particle, a region known to differ in structure and stability from the peripheral segments of nucleosome DNA.  相似文献   

10.
11.
12.
13.
14.
Schalch T  Duda S  Sargent DF  Richmond TJ 《Nature》2005,436(7047):138-141
  相似文献   

15.
Guse A  Carroll CW  Moree B  Fuller CJ  Straight AF 《Nature》2011,477(7364):354-358
During cell division, chromosomes are segregated to nascent daughter cells by attaching to the microtubules of the mitotic spindle through the kinetochore. Kinetochores are assembled on a specialized chromatin domain called the centromere, which is characterized by the replacement of nucleosomal histone H3 with the histone H3 variant centromere protein A (CENP-A). CENP-A is essential for centromere and kinetochore formation in all eukaryotes but it is unknown how CENP-A chromatin directs centromere and kinetochore assembly. Here we generate synthetic CENP-A chromatin that recapitulates essential steps of centromere and kinetochore assembly in vitro. We show that reconstituted CENP-A chromatin when added to cell-free extracts is sufficient for the assembly of centromere and kinetochore proteins, microtubule binding and stabilization, and mitotic checkpoint function. Using chromatin assembled from histone H3/CENP-A chimaeras, we demonstrate that the conserved carboxy terminus of CENP-A is necessary and sufficient for centromere and kinetochore protein recruitment and function but that the CENP-A targeting domain--required for new CENP-A histone assembly--is not. These data show that two of the primary requirements for accurate chromosome segregation, the assembly of the kinetochore and the propagation of CENP-A chromatin, are specified by different elements in the CENP-A histone. Our unique cell-free system enables complete control and manipulation of the chromatin substrate and thus presents a powerful tool to study centromere and kinetochore assembly.  相似文献   

16.
17.
Tsukuda T  Fleming AB  Nickoloff JA  Osley MA 《Nature》2005,438(7066):379-383
The repair of DNA double-strand breaks (DSBs) is crucial for maintaining genome stability. Eukaryotic cells repair DSBs by both non-homologous end joining and homologous recombination. How chromatin structure is altered in response to DSBs and how such alterations influence DSB repair processes are important issues. In vertebrates, phosphorylation of the histone variant H2A.X occurs rapidly after DSB formation, spreads over megabase chromatin domains, and is required for stable accumulation of repair proteins at damage foci. In Saccharomyces cerevisiae, phosphorylation of the two principal H2A species is also signalled by DSB formation, which spreads approximately 40 kb in either direction from the DSB. Here we show that near a DSB phosphorylation of H2A is followed by loss of histones H2B and H3 and increased sensitivity of chromatin to digestion by micrococcal nuclease; however, phosphorylation of H2A and nucleosome loss occur independently. The DNA damage sensor MRX is required for histone loss, which also depends on INO80, a nucleosome remodelling complex. The repair protein Rad51 (ref. 6) shows delayed recruitment to DSBs in the absence of histone loss, suggesting that MRX-dependent nucleosome remodelling regulates the accessibility of factors directly involved in DNA repair by homologous recombination. Thus, MRX may regulate two pathways of chromatin changes: nucleosome displacement for efficient recruitment of homologous recombination proteins; and phosphorylation of H2A, which modulates checkpoint responses to DNA damage.  相似文献   

18.
19.
20.
F Thoma  R T Simpson 《Nature》1985,315(6016):250-252
The structure of the nucleosome core particle, the basic structural subunit of chromatin, is well known. Although nucleosomes often appear to be positioned randomly with respect to DNA sequences, in some cases they seem to occupy precisely defined positions on the DNA. The yeast plasmid TRP1ARS1 contains three precisely positioned, stable nucleosomes, I, II and III, which are flanked by nuclease-sensitive regions. Our aim in the present study was to determine whether the positions of these three nucleosomes relate to (1) protein-DNA interactions; (2) the limited space between nuclease-sensitive regions, which is just long enough to accommodate three yeast nucleosomes (that is, boundary conditions); or (3) proximity to the putative origin of replication in one of the nuclease-sensitive regions. We have tested these alternatives by analysing the positions of nucleosomes after insertion of various lengths of DNA into this region and assembly of chromatin in vivo. Our results suggest that specific protein-DNA interactions are the most likely determinants of these nucleosome positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号