首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In view of the special requirements for strength, heat resistance and corrosion resistance of Al-Zn-Mg-Cu alloy for oil drilling, the Al-6.2 Zn-2.5 Mg-1.6 Cu alloy was prepared by increasing Cu content on basis of Russian Series 1953 alloy. The effect of heat treatment on the microstructures and properties of the alloy was characterized by optical microscope(OM), scanning electron microscope(SEM) and transmission electron microscope(TEM), and investigated by tensile test at room temperature, thermal exposure test and corrosion test. The results show that the strength after T6 aging treatment exhibit a decrease trend as an increase of the solution temperature from465 °C to 480 °C. After the solution treated by the rate of 470 °C/1 h, second phases dissolve into the matrix very well and the strength property reaches optimum. The alloy has better comprehensive properties treated by a solution treatment of 470 °C/1 h and then followed by an aging treatment of 120 °C/24 h + 170 °C/1 h + 120 °C/24 h. Under the aging state, the precipitated phases inside the grains are suitable in size, while on the grain boundary distribute discontinuously and the precipitate-free zone is obvious. Besides, the alloy still maintain high tensile properties. The yield strength, tensile strength and elongation are 650 MPa, 686 MPa,12.0%, respectively. The yield strength retention after heat exposure is 92%. The alloy has good corrosion resistance and the exfoliation corrosion degree. The average corrosion rate in the H_2S and CO_2 environment is 0.0024 mm/a, which is far less than the required 0.12 mm/a. It is insensitive to H_2S and CO_2 environments.  相似文献   

2.
Ceramic coatings with aluminum titanuate (Al2TiO5) were prepared on Ti–6Al–4V alloy using pulsed bi-polar Micro-arc Oxidation (MAO). The micromorphology and phase composition of the micro-arc-oxidition ceramic coatings on the titanium alloy were characterized by X-ray powder diffraction (XRD), and scanning electron microscopy (SEM) respectively. The results revealed that the distinct discharge channels and pores on the surface of the micro-arc-oxidition coatings appeared, and these channels were connected in the molten state. The electrolyte concentration was inversely proportional to the coating hardness; additionally, the coating prepared with sodium aluminate and sodium hypophosphite concentrations of 4 ?g/L and 0.5 ?g/L, respectively, was the most refined after high-temperature sintering, and it was demonstrated to better prevent oxidation. Increasing the electrolyte concentration coincided with fluctuating coating thermal shock resistance. The thermal shock resistance of the coating respectively prepared with sodium aluminate, and the sodium hypophosphite concentrations of 4 ?g/L and 0.5 ?g/L was the highest. Additionally, the high-concentration coatings performed significantly better than the low-concentration coatings. The oxidation resistance of the coating samples was also significantly higher than that of the TC4 titanium alloy substrate. The adhesion strength between the coatings and the substrate with and without the sealing treatment was measured by tensile tests. Then, the high-temperature oxidation performance of the coating samples with and without the sealing treatment was investigated by conducting a high-temperature oxidation experiment at a calcinating temperature of 500 ?°C. The results indicate that the adhesion strength between the coatings and substrate was high for the as-prepared and sealed micro-arc oxidation samples regardless of whether they were calcined. The high-temperature oxidation mass increase curves for the sealed and unsealed coating samples calcined at 500 ?°C for 500 ?h revealed that the high-temperature-oxidation-induced mass increase of the coating samples sealed with a sodium silicate solution was much lower than that of the titanium alloy substrate. Thus, the sealing treatment significantly improved the high-temperature oxidation resistance of the TC4 titanium alloy. Lastly, the high-temperature oxidation behavior at 500 ?°C was analyzed and discussed.  相似文献   

3.
研究了不同稀土含量铁铬铝合金,在高温下晶粒长大及界面结构。结果表明:在1200℃以上高温,稀土组元(以La为主)对抑制合金的晶界长大有一定效果,La_2O_3可作为TiN相析出的形核中心,细小TiN质点可在晶界上出现,阻碍晶界迁移;在变温过程中,La向界而扩散,在晶界以La_2O_3形式出现,同时稀土加速氧穿过氧化膜向基体中渗透,导致Al_2O_3及La_2O_3在基体中形成。  相似文献   

4.
b-NiAlDy cast alloys containing varying aluminum content were prepared by arcmelting. The microstructures and cyclic oxidation behavior of the alloys at 1200 1C were investigated. Grain refinement was achieved by increasing aluminum content in the alloy, which is beneficial to selective oxidation. The Ni–55Al–0.1Dy alloy showed excellent cyclic oxidation resistance due to the formation of a continuous, dense and slow-growing oxide scale. In contrast to this, severe internal oxidation as well as large void formation at the scale/alloy interface occurred in the Ni–45Al–0.1Dy alloy. The aluminum content dependence of the reactive element effects in b- NiAlDy was established that Dy doping strengthened the scale/alloy interface by pegging mechanism in high-aluminum alloys but accelerated internal oxidation in low-aluminum alloys during high-temperature exposure.  相似文献   

5.
Four modified Al diffusion coatings (Al, Cr? Al, Al?Si and Cr? Al ? Si coatings) were prepared on Ni3Al based single crystal superalloy IC20. The oxidation tests were carried out at 1 150 °C for up to 100 h. Cyclic hot corrosion tests were carried out at 950 °C for 50 h. The results indicate that the oxidation and corrosion resistance s of IC20 alloy are improved significantly by the coatings, and both oxidation and hot corrosion resistances of the four coatings are rated in the order (from worst to best) of Cr ? Al, Al, Cr ? Al ? Si, Al? Si coatings. It is found that the degradations of Al and Cr ? Al coatings are very quick due to the serious inter-diffusion between the coatings and substrates. The inter-diffusion between Si-containing coatings and substrates is reduced since Si effe ctively retards the outward diffusion of Mo. The weak effects of Cr and benefit effects of Si to the oxidation and hot corrosion resistance were discussed. The hot corrosion degradation mechanism of superalloy IC20 was analyzed.  相似文献   

6.
To explore and study the Fe-Al system alloy presenting exceptional oxidation resistance at high temperature, the Fe-36Al-0.09C-0.09B-0.04Zr alloy was designed and developed. The microstructure and hardness of the backing at 1250°C were analyzed and measured. Thermodynamics and kinetics of the oxidation behavior were also analyzed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy techniques. The results show that the microstructure of the Fe-36Al-0.09C-0.09B-0.04Zr alloy is FeAl phase at ambient temperature and is stable at 1250°C. It displays the excellent property of oxidation resistance because the oxide film has only the Al2O3 layer, and its oxidation kinetics curve obeys the parabolic law at 1250°C. The oxidation mechanism at 1250°C is presumed that in the early oxidation period, the alloy oxidizes to form a large number of Al2O3 and a little Fe2O3, then, the enrichment of Al caused by Fe oxidization combines with O to form Al2O3.  相似文献   

7.
The oxidation behavior of a nickel-based superalloy at 1000°C in air was investigated through X-ray diffraction, scanning electron microscopy, andenergy-dispersive spectroscopy analysis. A series of oxides, including external oxide scales (Cr2O3, (TiO2 + MnCr2O4)) and internal oxides (Al2O3,TiN), were formed on the surface or sub-surface of the substrate at 1000°C in experimental still air. The oxidation re-sistance of the alloy was dependent on the stability of the surface oxide layer. The continuity and density of the protective Cr2O3 scale were affected by minor alloying elements such as Ti and Mn. The outermost oxide scale was composed of TiO2 rutile and MnCr2O4 spinel, and the growth of TiO2particles was controlled by the outer diffusion of Ti ions through the pre-existing oxide layer. Severe internal oxidation oc-curred beneath the external oxide scale, consuming Al and Ti of the strength phaseγ′ (Ni3(Al,Ti)) and thereby severely deteriorating the sur-face mechanical properties. The depth of the internal oxidation region was approximately 35μm after exposure to experimental air at 1000°C for 80 h.  相似文献   

8.
A novel advanced oxidation process——wet electrocatalytic oxidation (WEO) was studied with p-nitrophenol as model pollutant and β-PbO2 electrode as the anode. Compared with the effect of the individual wet air oxidation (WAO) and electrochemical oxidation (EO), the effect of WEO showed syn- ergistic effect on COD removal under the conditions of temperature 160℃, C=1000 mg·L-1, PN2=0.50 MPa, PO2=0.9 MPa, current density = 3 mA·cm-2, Na2SO4 3 g·L-1. And the synergistic factor got the best value of 0.98 within 120 min after 180 min treatment. The synergistic factor was studied after 120 min treatment at 100℃, 120℃, 140℃ and 160℃, and the effect of 120℃ was the best with the value of 1.26. Possible mechanism for the synergistic effect was discussed based on the analysis of free-radical generation and intermediates detected by HPLC and GC/MS.  相似文献   

9.
对冷变形后的Co36Fe36Cr18Ni8Ti2合金在700 ℃和800 ℃下再结晶退火,制备成具有高强度及良好耐蚀性的多主元合金。采用电子背散射衍射(electron back-scattered diffraction, EBSD)表征了合金的相分布、再结晶组织以及晶界分布等微观结构特征,采用静态拉伸试验测试了合金的力学性能。结果表明,700 ℃退火的合金断后伸长率较低,但其抗拉强度与屈服强度分别达到了1 038和956 MPa。采用电化学工作站与扫描电子显微镜(scanning electron microscope, SEM)表征了合金在模拟体液中的耐蚀性。结果表明,700 ℃退火的样品具有较好的耐蚀性,腐蚀后的样品表面较为均匀。结合力学性能可知,700 ℃退火的样品具有作为新型医用金属材料的潜力。  相似文献   

10.
A low-carbon anti-wear steel,multi-alloyed with Si-Cr-Mn-Al-Ni-Mo-(Nb,RE),was designed for vane pumps of ships. The novel cast steel after various heat treatments was characterized by microstructure observations and mechanical properties measurement in order to achieve an optimal process correlated with good abrasive resistance for a long marine service.Differential scanning calorimetry and hardness analyses deduced a complete austenitizing temperature of 1 000℃,based on the alloying element homogenizati...  相似文献   

11.
Microarc oxidation(MAO)electrolysis plasma deposition was used to prepare Al_2O_3coatings on Ti-45Al-8.5 Nb alloys to improve high temperature oxidation resistance.The surface and cross-section morphologies before and after high-temperature oxidation,the chemical composition,and the phase identification of the coatings were investigated by scanning electron microscopy(SEM),electron probe microanalyses(EPMA),and X-ray diffraction(XRD).The results show that Al_2O_3coatings with a thickness of approximately 8μm can be obtained on the Ti-45Al-8.5 Nb alloys by MAO for 600 s.The samples with the Al_2O_3coatings exhibited better high-temperature oxidation resistance.A minimal weight gain of only 0.396 g/m~2after 100 h oxidation at 900°C was observed for the coatings formed with a deposition voltage of 400 V and using a duty cycle of 3%.The deposition mechanism of the Al_2O_3coatings and the effect of the MAO parameters are also described.  相似文献   

12.
The hot deformation behaviors of GH4706 alloy were investigated using compression tests in a deformation temperature range from 900℃ to 1200℃ with a strain rate range of 0.001–1 s?1. Hot processing maps were developed on the basis of the dynamic material model and compression data. A three-dimensional distribution of power dissipation parameter (η) with strain rate and temperature reveals that η decreases in sensitivity with an increase in strain rate and a decrease in temperature. Microstructure studies show that the grain size of GH4706 alloy increases when η is larger than 0.32, and the microstructure exhibits local deformation when η is smaller than 0.23. The hot processing map at the strain of 0.7 exposes a domain peak at η=0.32 for the temperature between 940℃ and 970℃ with the strain rate from 0.015 s?1 to 0.003 s?1, and these are the optimum parameters for hot working.  相似文献   

13.
The hot deformation behavior of uniform fine-grained GH4720Li alloy was studied in the temperature range from 1040 to 1130℃ and the strain-rate range from 0.005 to 0.5 s?1 using hot compression testing. Processing maps were constructed on the basis of compression data and a dynamic materials model. Considerable flow softening associated with superplasticity was observed at strain rates of 0.01 s?1 or lower. According to the processing map and observations of the microstructure, the uniform fine-grained microstructure remains intact at 1100℃ or lower because of easily activated dynamic recrystallization (DRX), whereas obvious grain growth is observed at 1130℃. Metallurgical instabilities in the form of non-uniform microstructures under higher and lower Zener–Hollomon parameters are induced by local plastic flow and primary γ′ local faster dissolution, respectively. The optimum processing conditions at all of the investigated strains are proposed as 1090–1130℃ with 0.08–0.5 s?1 and 0.005–0.008 s?1 and 1040–1085℃ with 0.005–0.06 s?1.  相似文献   

14.
添加钨和稀土元素对TiAl合金性能的影响   总被引:1,自引:0,他引:1  
采用机械合金化结合粉末冶金技术制备Ti-44.7Al、Ti-44.7Al-xW、Ti-44.7Al-xLa-yCe合金材料,采用透射电镜和金相显微镜研究不同W、La、Ce添加量对机械合金化TiAl基合金的显微组织的影响,并对合金的力学性能进行测试.研究表明,在不添加任何元素时TiAl合金颗粒的平均尺寸为30~60 μm,但添加微量稀土元素La、Ce对TiAl基合金的细化作用非常明显,其平均尺寸为20 μm;通过机械合金化在TiAl基合金系统中添加微量W元素会形成新的固溶体相,这种新成分相大大提高TiAl基合金的抗弯强度σb,当W添加量为1.0%时,σb达到峰值,随后随着W原子数分数的增加,抗弯强度降低;TiAl合金的抗弯强度σb开始随着稀土元素La的增加而增加,在0.5%原子数分数处达到峰值,然后强度随稀土原子数分数的继续增加而下降;而合金的强度却随添加Ce的原子数分数的增加而直线下降,同时添加W的TiAl合金的强度高于加稀土La、Ce的TiAl合金的强度.  相似文献   

15.
The effect of Ru on microstructure stability and stress rupture properties of a Ni_3Al single-crystal alloy was investigated. The experimental results showed that the addition of 2%Ru(mass fraction) improved the microstructure stability due to the restraint of harmful Y-NiMo phase formation during the thermal exposure at the high temperature above 1 000℃.And the reason may be that the addition of Ru increased the degree of Mo supersaturation in bothγandγ' phases,and hence suppressed the precipitation of ...  相似文献   

16.
The microstructure and room-temperature tensile properties of Ti14, a new α+Ti2Cu alloy, were investigated after conventional forging at 950℃ and semi-solid forging at 1000 and 1050℃, respectively. Results show that coarse grains and grain boundaries are obtained in the semi-solid alloys. The coarse grain boundaries are attributed to Ti2Cu phase precipitations occurred on the grain boundaries during the solidification. It is found that more Ti2Cu phase precipitates on the grain boundaries at a higher semi-solid forging temperature, which forms precipitated zones and coarsens the grain boundaries. Tensile tests exhibit high strength and low ductility for the semi-solid forged alloys, especially after forging at 1000℃. Fracture analysis reveals the evidence of ductile failure mechanisms for the conventional forged alloy and cleavage fracture mechanisms for the alloy after semi-solid forging at 1050℃.  相似文献   

17.
The hot deformation behavior of the as-cast Ti–48Al–2Cr–2Nb alloy was investigated by isothermal compression tests at deformation temperatures ranging from 1000℃ to 1200℃,and strain rates from 0.001 s~(-1)to 0.1 s~(-1).The single peak stress features common to all flow curves indicate that DRX is the dominating softening mechanism.The calculated values of the hot deformation activation energy Q and stress index n are 296.5 kJ mol~(-1)and 3.97,respectively.Based on this,the Arrhenius type constitutive equation was successfully established.The DRX critical condition model and relationship among DRX volume fractions,deformation temperatures and strain rates were obtained to optimize the process.Combined with microstructure analysis,it's concluded that 1200℃/0.01s~(-1)is the optimization parameter.Besides,both DDRX and CDRX were observed in theγphase evolution.The deformation mechanism from the inter-grain dislocation motion to the grain boundary migration and grain rotation was discussed.  相似文献   

18.
A new titanium alloy Ti12.5Zr2.5Nb2.5Ta (TZNT) for surgical implant application was synthesized and fully annealed at 700℃ for 45 min. The microstructure and the mechanical properties such as tensile properties and fatigue properties were investigated. The results show that TZNT mainly consists of a lot of lamella α-phase clusters with different orientations distributed in the original β-phase grain boundaries and a small amount of β phases between the lamella α phases. The alloy exhibits better ductility, lower modulus of elasticity, and lower admission strain in comparison with Ti6Al4V and Ti6Al7Nb, indicating that it has better biomechanical compatibility with human bones. The fatigue limit of TZNT is 333 MPa, at which the specimen has not failed at 107 cycles. A large number of striations present in the stable fatigue crack propagation area, and many dimples in the fast fatigue crack propagation area are observed, indicating the ductile fracture of the new alloy.  相似文献   

19.
The microstructures and tensile behaviours of cerium (Ce) doped polycrystalline Co-9Al-4.5W-4.5Mo-2Ta-0.02B alloys (doped 0.05 and 0.2 at.% Ce) at room temperature (RT) and 600–800 °C were investigated. In-suit tensile test under SEM was conducted to understand the deformation and damage mechanisms at RT. Aged at 800 °C for 50 h, the 0.05Ce alloy consisted of a Co solid-solution matrix (γ-CoSS) and nano-scale cuboidal γ′-Co3(Al, W) precipitates, while for the 0.2Ce alloy, κ-Co3(W, Mo) precipitates and γ′-depleted zone were present at the grain boundaries in addition to the γ/γ′ microstructure. The 0.05Ce alloy exhibited flow stress anomalies at 700 °C. With higher Σ1∼3 boundary fraction and cleaned-up grain boundary, the 0.05Ce alloy always showed greater strength and elongation than the 0.2 Ce alloy with the grain boundary precipitates at temperatures up to 800 °C. Doped 0.05 at.% Ce made the Co-9Al-4.5W-4.5Mo-2Ta-0.02B alloy have an excellent elongation of 6.1% at 700 °C, owing to a mixed transgranular dimple plus intergranular cleavage fracture. The slip bands transferring through the low-angle grain boundary and slipping of the γ′-Co3(Al, W) in the 0.5Ce alloy resulted in excellent ductility of 20.4% at RT.  相似文献   

20.
钇在 MCrAlY 激光熔覆层中的存在形式及作用   总被引:4,自引:0,他引:4  
研究了稀土元素钇(Y)在激光熔覆层中的存在形式及对熔覆层抗氧化性能的影响.结果表明,Y以富Y粒子的形式弥散分布于基体相的晶界和晶内,净化了晶界,增强了氧化膜与基体间的粘附力,减小了氧化膜的长大速率,从而提高了熔覆层的抗氧化性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号