首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 468 毫秒
1.
在分析浅埋煤层中潜水渗流场与工程开挖应力场相互影响的基础上,建立了厚松散层富含潜水浅埋煤层组合关键层的岩体水力学模型;提出了流固耦合损伤因子,分析了采动覆岩中组合关键层在流固耦合损伤作用下的破坏规律。对浅埋煤层采场来压步距的计算公式进行了修正。以修正公式计算的大柳塔1203工作面的初次来压步距与实测非常接近。这证明该公式对于地表厚松散层浅埋煤层中的组合关键层的破断距计算具有一定的适应性。  相似文献   

2.
厚土层覆盖浅埋煤层支架适应性分析   总被引:2,自引:0,他引:2  
分析了陕西榆树湾煤矿浅埋煤层开采支架的适应性,揭示了厚土层覆盖浅埋煤层开采条件下覆岩层的破坏规律;模型实验表明工作面初次来压步距为70~75 m,工作面初次来压步距相对较大;组合关键层的破断形成大周期来压现象,支架动载系数平均为1.21,支架阻力能平衡顶板压力,满足工作面正常开采时对支护阻力的要求.研究成果对指导工作面采前准备工作具有重要意义.  相似文献   

3.
厚松散层浅埋煤层覆岩破断判据及跨距计算   总被引:12,自引:6,他引:6  
在分析组合关键层有关参数的基础上,推导出了组合关键层初次来压步距和周期来压步距的计算公式。由于关键层理论和组合关键层理论的载荷和弹性模量不同,而且两者来压步距的计算公式也不相同,因此以关键层理论计算浅埋煤层矿压参数必然会出现很大的误差。大柳塔 1203 工作面按照关键层计算得出的顶板来压步距与实际相差很大,而按照组合关键层计算得出的顶板来压步距与实际基本吻合。以组合关键层理论计算的矿压有关参数与实测一致,这证明对于地表厚松散层浅埋煤层,应采用组合关键层理论。  相似文献   

4.
运用有限元数值分析方法,详细研究了采高变化及关键层复合效应对关键层破断,即采场来压步距的影响,并建立了相应的采场来压步距估算公式图6,表5,参4  相似文献   

5.
近浅埋煤层老顶初次垮落规律及控顶措施   总被引:1,自引:1,他引:0  
以榆阳煤矿2302工作面的开采实践为工程背景,利用"板"和"梁"2种力学模型对近浅埋煤层条件下的老顶初次来压步距进行了分析和计算.结合老顶实际垮落步距确定出适合近浅埋地质条件下的力学模型,并计算了"板"力学模型在不同边界条件下初次来压步距.为了解决老顶初次来压步距过大的问题,根据采场处于不同边界条件下初次来压步距的特点,提出了采用深孔预裂爆破和区段煤柱宽度缩小的方法,使采场处于"两边固支两边简支"的受力状态,以减小初次来压步距,保证初采初放期间工作面顶板安全.  相似文献   

6.
急倾斜煤层覆岩破断和裂隙演化的采厚效应   总被引:1,自引:0,他引:1  
为了确保水体下急倾斜煤层的安全回采,基于龙湖煤矿南二采区急倾斜煤层的水文工程地质条件,采用相似材料物理模拟实验,分析了急倾斜煤层覆岩破断和裂隙演化的采厚效应.结果表明:急倾斜煤层开采顶板坚硬上覆岩层存在关键层时,顶板岩梁以层状破断为主,初次破断均形成“复合破断”;急倾斜煤层开采顶板岩梁初次破断后,覆岩裂隙向关键层及其上方岩层发育,不同采厚导水裂隙分布均呈“耳型”分布;随着急倾斜煤层采厚的增大,急倾斜煤层初次破断步距呈降低趋势,覆岩裂隙发育高度和初次破断厚度呈增大趋势.  相似文献   

7.
基于国内外研究结论,本文以皖北矿区百善煤矿6煤层为研究对象,通过分析浅部煤层保水开采机理和关键,提出以"上覆岩层水体渗流速度确定工作面推进速度"的思路(工作面推进速度能使关键层采后破断的砌体在上部水体渗流到采空区前闭合)。根据渗流理论、经验公式和实测资料等,对保水开采分类中工作面上覆岩层中的潜水渗流时间进行公式推导及计算;根据关键层理论和百善煤矿地质资料,计算出各分类上覆岩层初次和周期破断距。由此,计算和确定出各分类工作面推进速度,同时,以推进速度下限和采煤机切割速度确定安全保水开采的工作面长度范围。进一步完善保水开采技术体系,为浅部煤层保水开采技术的安全应用提供理论指导。  相似文献   

8.
 以同忻矿石炭系3-5 煤层8015 工作面为例,分析了坚硬覆岩破断特征及其对煤层工作面矿压显现的控制作用。应用关键层理论确定工作面坚硬覆岩的关键层及关键层的初次破断距和周期破断距,基于材料力学理论导出关键层破断与工作面支承压力的关系式,分析关键层破断对煤层工作面矿压显现的影响规律。结果表明,煤层工作面坚硬覆岩存在亚关键层I、亚关键层II 和主关键层,3 个关键层的破断导致工作面产生大小周期压力和复合压力,其中主关键层破断造成工作面矿压范围较大;理论分析方法揭示的矿压显现规律与现场矿压监测结果具有较好的一致性。  相似文献   

9.
南梁厚土层浅埋单体长壁工作面矿压规律实测分析   总被引:2,自引:0,他引:2  
在南梁煤矿首采工作面20105采前实验研究的基础上进行了现场观测,实测了活柱的下缩量、工作面顶板的移近量、顶板的来压强度以及巷道变形破坏参数,总结了厚土层覆盖层浅埋煤层单体长壁工作面的矿压显现规律.实验和观测表明,厚土层覆盖浅埋煤层工作面初次来压步距大,矿山压力显现剧烈,周期来压台阶下沉量大.针对目前顶板的支护状况和顶板灾变危险,提出了提高支柱初撑力等改善措施,为实现厚土层覆盖浅埋煤层单体长壁工作面安全开采提供了可靠依据.图7,参8.  相似文献   

10.
为掌握特大采高工作面矿压显现规律,突破采高极限,采用理论分析、相似材料模拟和数值模拟等多种手段,对上湾煤矿特大采高(8.8 m)工作面进行研究.研究结果表明:工作面基本顶初次来压步距为54 m,周期来压步距为12.8~30 m,平均周期来压步距为22 m;主关键层初次破断距为69~79 m,周期破断距为42~48 m,平均周期破断距为45 m;工作面超前支承压力为11.10~12.98 MPa,应力峰值点到煤壁距离为9~13.2 m,影响范围为74~96 m,应力集中系数为2.10~2.40.  相似文献   

11.
大采高开采的方法是提高煤炭资源回收、实现矿井高产高效的重要发展方向,但也造成工作面覆岩破坏严重。为此,文中以宁东煤田赋存的覆沙层下特厚煤层为背景开展大采全高工作面覆岩运移研究,运用相似模拟的方法并综合多种监测仪器从模拟现象、力源两个角度对大采高工作面覆岩运移、下沉乃至垮落的特征进行了全程监测与分析。研究表明:大采高工作面覆岩垮落初次来压步距较大,支架带压移架后极易发生直接顶乃至老顶的突然垮落,工作面来压强烈、伴随有明显的支架动载现象;延伸至地表的裂隙有诱发地表覆沙层弯曲、有溃入工作面的可能;模型开采结束后形成了6条贯穿至地表且与工作面推进方向成60°的垮落裂缝;模型内部各岩层下沉范围随着工作面的推进而不断扩大,呈U字型下沉趋势。  相似文献   

12.
本文在现场实测的基础上,利用相似材料模拟实验方法,对厚煤层恒底开采和下行分层开采的矿压显现规律进行了对比研宄。研究结果表明:恒底开采第一分层时,由于顶煤易在采空区冒落,冒高较大,因此老顶来压时对采场的影响程度明显减小,这对于厚煤层坚硬顶板条件下的安全生产是十分有利的;恒底开采时,顶板裂隙扩展范围较小(裂隙带高度减小),并能减小顶板出现离层的高度,因此,有利于顶板含水层下(或地表水下)安全生产;恒底开采时,除最后一个分层外,各分层工作面的顶板均为煤体,因此可以减少煤炭含矸率,当煤层顶板较破碎时,其效果更明显  相似文献   

13.
由于采场覆岩破坏高度及破坏程度是上行开采研究的最重要内容,因此,在对我国放顶煤开采典型覆岩工程地质条件分析的基础上,本文对放顶煤开采覆岩破坏高度进行现场实测统计分析,找出放顶煤开采覆岩破坏高度受地质因素的影响规律,从而为放顶煤条件下上行开采研究提供科学依据.  相似文献   

14.
沿空留巷保留巷道中的矿压显现存在强烈区和缓和区周期性交替的现象,通过建立沿空留巷结构力学模型,分析了此现象与工作面端头弧三角形悬板的关系。研究表明:周期来压时,工作面顶板断裂会在沿空巷道上方产生弧三角形悬板,悬板最大悬顶距对应位置的巷道矿压显现相对强烈,并且随工作面推进矿压显现强烈区以周期来压步距为步距跳跃前移。在上述研究基础上,提出弧三角形悬板位置预测与实测方法,并以东滩煤矿3203工作面沿空留巷为工程背景,通过矿压观测对矿压显现程度周期性现象和弧三角形悬板位置进行了验证,提出了分阶段不等强支护方式,为留巷滞后支护设计提供了依据。  相似文献   

15.
综采工作面矿压显现观测对煤矿安全高效生产具有重要的指导意义.该文通过对梨园河煤矿22111综采工作面在开采过程中顶板及围岩移动规律的观测研究,掌握了22111综采工作面的初次来压和周期来压步距、工作面支架支护强度、围岩破坏活动过程中煤壁应力变化大小和应力影响范围.  相似文献   

16.
由于煤体及直接顶岩层的弹性压缩变形,老顶岩梁端部开裂前并不是处于理想的嵌固支承状态。本文深入地分析了由直接顶和煤层组成的弹性基础变形效应对老顶岩梁活动规律的影响,给出了列传统老顶岩梁来压步距公式进行修正的具体方法。研究成果对于指导现场预计顶板活动规律和进行控制设计具有重要意义。  相似文献   

17.
针对目前综放开采条件下对顶板岩移破坏时空演化规律研究不足的问题,采用相似模拟实验的方法对综放开采条件下覆岩移动和破坏机制以及采动裂隙分布规律和形态特征进行研究,结果表明:随工作面推进裂隙带逐渐地往上演化发展,而且当关键性岩层垮落断裂时,这种裂隙演化更为迅速;当工作面回采至240m时,离层裂隙趋于闭合,采动影响达到模型的顶部,裂隙带高度不再随着工作面推进距离的变化而改变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号