首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过引入四阶非线性薛定谔方程,基于随机波列演化的Benjamin-Feir不稳定性,采用伪谱方法建立了二维深水波浪数值水槽来模拟海洋中的异常波现象。为了验证该数值模型的有效性,计算了二维水槽中边带扰动随机波列的传播变形,从数值和试验结果的比较上看,该模型可以很好地再现异常波现象。  相似文献   

2.
Nonlinear periodic lattices occur in a large variety of systems, such as biological molecules, nonlinear optical waveguides, solid-state systems and Bose-Einstein condensates. The underlying dynamics in these systems is dominated by the interplay between tunnelling between adjacent potential wells and nonlinearity. A balance between these two effects can result in a self-localized state: a lattice or 'discrete' soliton. Direct observation of lattice solitons has so far been limited to one-dimensional systems, namely in arrays of nonlinear optical waveguides. However, many fundamental features are expected to occur in higher dimensions, such as vortex lattice solitons, bright lattice solitons that carry angular momentum, and three-dimensional collisions between lattice solitons. Here, we report the experimental observation of two-dimensional (2D) lattice solitons. We use optical induction, the interference of two or more plane waves in a photosensitive material, to create a 2D photonic lattice in which the solitons form. Our results pave the way for the realization of a variety of nonlinear localization phenomena in photonic lattices and crystals. Finally, our observation directly relates to the proposed lattice solitons in Bose-Einstein condensates, which can be observed in optically induced periodic potentials.  相似文献   

3.
The realization of all-optical switching, modulating and computing devices is an important goal in modern optical technology. Nonlinear optical materials with large third-order nonlinear susceptibilities (chi(3)) are indispensable for such devices, because the magnitude of this quantity dominates the device performance. A key strategy in the development of new materials with large nonlinear susceptibilities is the exploration of quasi-one-dimensional systems, or 'quantum wires'--the quantum confinement of electron-hole motion in one-dimensional space can enhance chi(3). Two types of chemically synthesized quantum wires have been extensively studied: the band insulators of silicon polymers, and Peierls insulators of pi-conjugated polymers and platinum halides. In these systems, chi(3) values of 10(-12) to 10(-7) e.s.u. (electrostatic system of units) have been reported. Here we demonstrate an anomalous enhancement of the third-order nonlinear susceptibility in a different category of quantum wires: one-dimensional Mott insulators of 3d transition-metal oxides and halides. By analysing the electroreflectance spectra of these compounds, we measure chi(3) values in the range 10(-8) to 10(-5) e.s.u. The anomalous enhancement results from a large dipole moment between the lowest two excited states of these systems.  相似文献   

4.
首先通过规范变换建立了该方程与标准的耦合非线性薛定谔方程的联系;进而运用达布变换求出标准的耦合非线性薛定谔方程的怪波解,得到变系数耦合非线性薛定谔方程的怪波解;最后讨论了超格势阱影响下的耦合非线性薛定谔方程的怪波解的动力学行为.  相似文献   

5.
Nonlinear and quantum atom optics   总被引:2,自引:0,他引:2  
Rolston SL  Phillips WD 《Nature》2002,416(6877):219-224
Coherent matter waves in the form of Bose-Einstein condensates have led to the development of nonlinear and quantum atom optics - the de Broglie wave analogues of nonlinear and quantum optics with light. In nonlinear atom optics, four-wave mixing of matter waves and mixing of combinations of light and matter waves have been observed; such progress culminated in the demonstration of phase-coherent matter-wave amplification. Solitons represent another active area in nonlinear atom optics: these non-dispersing propagating modes of the equation that governs Bose-Einstein condensates have been created experimentally, and observed subsequently to break up into vortices. Quantum atom optics is concerned with the statistical properties and correlations of matter-wave fields. A first step in this area is the measurement of reduced number fluctuations in a Bose-Einstein condensate partitioned into a series of optical potential wells.  相似文献   

6.
Three-wave mixing in nonlinear materials--the interaction of two light waves to produce a third--is a convenient way of generating new optical frequencies from common laser sources. However, the resulting optical conversion yield is generally poor, because the relative phases of the three interacting waves change continuously as they propagate through the material. This phenomenon, known as phase mismatch, is a consequence of optical dispersion (wave velocity is frequency dependent), and is responsible for the poor optical conversion potential of isotropic nonlinear materials. Here we show that exploiting the random motion of the relative phases in highly transparent polycrystalline materials can be an effective strategy for achieving efficient phase matching in isotropic materials. Distinctive features of this 'random quasi-phase-matching' approach are a linear dependence of the conversion yield with sample thickness (predicted in ref. 3), the absence of the need for either preferential materials orientation or specific polarization selection rules, and the existence of a wavelength-dependent resonant size for the polycrystalline grains.  相似文献   

7.
主要从单模光纤传输模型——常系数和变系数非线性薛定愕方程出发,运用最近得到发展的求精确解的扩展的双曲函数法、F-展开法、基于AKlVS技术的DarbOUX变换方法等方法和求数值解的Adomian分解方法,求得了孤波解,研究了基本光孤波和双孤波在单模光纤中的传输情况,为进一步实现超高速、大容量的光信息传输提供一定的理论依据.  相似文献   

8.
一种新型的多层共振结构   总被引:1,自引:0,他引:1  
我们提出一种新型的多层共振结构,即带尾巴的共振结构,它是由尾巴层和共振层两部分构成.这种共振结构能够在阻抗不匹配的介质间实现声波能量的有效耦合,这种功能是传统的单层共振结构不可能具备的.我们讨论了两类带尾巴的共振结构的特性和解释了产生这些特性的原因.在这种新型的共振结构中,一般而言尾巴层起振幅放大作用,而共振层起频率选择作用.  相似文献   

9.
When an intense laser pulse is focused into a gas, the light-atom interaction that occurs as atoms are ionized results in an extremely nonlinear optical process--the generation of high harmonics of the driving laser frequency. Harmonics that extend up to orders of about 300 have been reported, some corresponding to photon energies in excess of 500 eV. Because this technique is simple to implement and generates coherent, laser-like, soft X-ray beams, it is currently being developed for applications in science and technology; these include probing the dynamics in chemical and materials systems and imaging. Here we report that by carefully tailoring the shapes of intense light pulses, we can control the interaction of light with an atom during ionization, improving the efficiency of X-ray generation by an order of magnitude. We demonstrate that it is possible to tune the spectral characteristics of the emitted radiation, and to steer the interaction between different orders of nonlinear processes.  相似文献   

10.
All-optical control of light on a silicon chip   总被引:2,自引:0,他引:2  
Almeida VR  Barrios CA  Panepucci RR  Lipson M 《Nature》2004,431(7012):1081-1084
Photonic circuits, in which beams of light redirect the flow of other beams of light, are a long-standing goal for developing highly integrated optical communication components. Furthermore, it is highly desirable to use silicon--the dominant material in the microelectronic industry--as the platform for such circuits. Photonic structures that bend, split, couple and filter light have recently been demonstrated in silicon, but the flow of light in these structures is predetermined and cannot be readily modulated during operation. All-optical switches and modulators have been demonstrated with III-V compound semiconductors, but achieving the same in silicon is challenging owing to its relatively weak nonlinear optical properties. Indeed, all-optical switching in silicon has only been achieved by using extremely high powers in large or non-planar structures, where the modulated light is propagating out-of-plane. Such high powers, large dimensions and non-planar geometries are inappropriate for effective on-chip integration. Here we present the experimental demonstration of fast all-optical switching on silicon using highly light-confining structures to enhance the sensitivity of light to small changes in refractive index. The transmission of the structure can be modulated by up to 94% in less than 500 ps using light pulses with energies as low as 25 pJ. These results confirm the recent theoretical prediction of efficient optical switching in silicon using resonant structures.  相似文献   

11.
从麦克斯韦方程组出发,考虑光波介质的各向同性,在慢变包络近似下,得到了一般情况下的(1+1)维非线性薛定讶方程;研究了一维自聚焦介质中线性聚焦和散焦效应对空间孤子之间相互作用的影响;并讨论了不同条件下空间光孤子之间的相互作用.  相似文献   

12.
Optical parametric oscillation is a nonlinear process that enables coherent generation of 'signal' and 'idler' waves, shifted in frequency from the pump wave. Efficient parametric conversion is the paradigm for the generation of twin or entangled photons for quantum optics applications such as quantum cryptography, or for the generation of new frequencies in spectral domains not accessible by existing devices. Rapid development in the field of quantum information requires monolithic, alignment-free sources that enable efficient coupling into optical fibres and possibly electrical injection. During the past decade, much effort has been devoted to the development of integrated devices for quantum information and to the realization of all-semiconductor parametric oscillators. Nevertheless, at present optical parametric oscillators typically rely on nonlinear crystals placed into complex external cavities, and pumped by powerful external lasers. Long interaction lengths are typically required and the phase mismatch between the parametric waves propagating at different velocities results in poor parametric conversion efficiencies. Here we report the demonstration of parametric oscillation in a monolithic semiconductor triple microcavity with signal, pump and idler waves propagating along the vertical direction of the nanostructure. Alternatively, signal and idler beams can also be collected at finite angles, allowing the generation of entangled photon pairs. The pump threshold intensity is low enough to envisage the realization of an all-semiconductor electrically pumped micro-parametric oscillator.  相似文献   

13.
Ultralow-threshold Raman laser using a spherical dielectric microcavity   总被引:13,自引:0,他引:13  
Spillane SM  Kippenberg TJ  Vahala KJ 《Nature》2002,415(6872):621-623
The ability to confine and store optical energy in small volumes has implications in fields ranging from cavity quantum electrodynamics to photonics. Of all cavity geometries, micrometre-sized dielectric spherical resonators are the best in terms of their ability to store energy for long periods of time within small volumes. In the sphere, light orbits near the surface, where long confinement times (high Q) effectively wrap a large interaction distance into a tiny volume. This characteristic makes such resonators uniquely suited for studies of nonlinear coupling of light with matter. Early work recognized these attributes through Raman excitation in microdroplets-but microdroplets have not been used in practical applications. Here we demonstrate a micrometre-scale, nonlinear Raman source that has a highly efficient pump-signal conversion (higher than 35%) and pump thresholds nearly 1,000 times lower than shown before. This represents a route to compact, ultralow-threshold sources for numerous wavelength bands that are usually difficult to access. Equally important, this system can provide a compact and simple building block for studying nonlinear optical effects and the quantum aspects of light.  相似文献   

14.
考虑Lorentz局域场效应的影响,我们在Liouville运动方程的基础上用微扰理论分析了一个三能级系统的非线性响应.在非线性光学响应中,两波矢分别为k1,k2的连续相干脉冲将会在新的方向产生新的光波.计算之后,我们给出四波混频信号关于Lorentz局域场因子l的表达式,发现负时间延迟时在2k2-k1方向仍有四波混频信号,四波混频信号的频率也有所改变.  相似文献   

15.
在人体正常生理条件下,血管内的扰动将以应力波的形式传播.讨论了大动脉血管壁应力波的传播问题,得到了描述血管壁运动的非线性方程,分析了其线性近似下的色散关系.该非线性方程在低阶近似下演化为KdV方程,这说明在大动脉血管中存在孤立波,最后给出了该孤立波解并讨论了其实际意义.  相似文献   

16.
With the development of nanotechnology, many new optical phenomena in nanoscale have been demonstrated. Through the coupling of optical waves and collective oscillations of free electrons in metallic nanostructures, surface plasmon polaritons can be excited accompanying a strong near field enhancement that decays in a subwavelength scale, which have potential applications in the surface-enhanced Raman scattering, biosensor, optical communication, solar cells, and nonlinear optical frequency mixing. In the present article, we review the Green’s matrix method for solving the surface plasmon resonances and near field in arbitrarily shaped nanostructures and in binary metallic nanostructures. Using this method, we design the plasmonic nanostructures whose resonances are tunable from the visible to near-infrared, study the interplay of plasmon resonances, and propose a new way to control plasmonic resonances in binary metallic nanostructures.  相似文献   

17.
本文对在铁磁和反铁磁晶体中传播的电磁波的下列非线性贡象作了简要论述:(1)非线性磁化效应引起的静磁波的频率转换,(2)周期皱纹波导中非线性静磁表面波的禁带频移,(3)静磁波激发的光波模耦合,(4)电磁波经反铁磁膜层透射的功率多稳效应.  相似文献   

18.
Nonlinear optics in the extreme ultraviolet   总被引:1,自引:0,他引:1  
Sekikawa T  Kosuge A  Kanai T  Watanabe S 《Nature》2004,432(7017):605-608
Nonlinear responses to an optical field are universal in nature but have been difficult to observe in the extreme ultraviolet (XUV) and soft X-ray regions owing to a lack of coherent intense light sources. High harmonic generation is a well-known nonlinear optical phenomenon and is now drawing much attention in attosecond pulse generation. For the application of high harmonics to nonlinear optics in the XUV and soft X-ray regime, optical pulses should have both large pulse energy and short pulse duration to achieve a high optical electric field. Here we show the generation of intense isolated pulses from a single harmonic (photon energy 27.9 eV) by using a sub-10-femtosecond blue laser pulse, producing a large dipole moment at the relatively low (ninth) harmonic order nonadiabatically. The XUV pulses with pulse durations of 950 attoseconds and 1.3 femtoseconds were characterized by an autocorrelation technique, based on two-photon above-threshold ionization of helium atoms. Because of the small cross-section for above-threshold ionization, such an autocorrelation measurement of XUV pulses with photon energy larger than the ionization energy of helium has not hitherto been demonstrated. The technique can be extended to the characterization of higher harmonics at shorter wavelengths.  相似文献   

19.
利用时间相关的变分法对光纤光学系统中平面波调制的不稳定性进行研究,在拉格朗日变分的框架下推导出相位与振幅的演化方程,进而对线性化扰动方程的解进行了数值模拟,得出调制不稳定性下扰动功率随传输距离的变化关系  相似文献   

20.
Recent developments in compact ultrafast lasers   总被引:3,自引:0,他引:3  
Keller U 《Nature》2003,424(6950):831-838
Ultrafast lasers, which generate optical pulses in the picosecond and femtosecond range, have progressed over the past decade from complicated and specialized laboratory systems to compact, reliable instruments. Semiconductor lasers for optical pumping and fast optical saturable absorbers, based on either semiconductor devices or the optical nonlinear Kerr effect, have dramatically improved these lasers and opened up new frontiers for applications with extremely short temporal resolution (much smaller than 10 fs), extremely high peak optical intensities (greater than 10 TW/cm2) and extremely fast pulse repetition rates (greater than 100 GHz).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号