首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Three classes of C2H2 zinc finger proteins   总被引:13,自引:0,他引:13  
C2H2 zinc finger proteins probably comprise the largest family of regulatory proteins in mammals. Most zinc fingers bind to a cognate DNA. In addition to DNA, many of the proteins also bind to RNA or protein, and some bind to RNA only. The binding properties depend on the amino acid sequence of the finger domains and of the linker between fingers, as well as on the higher-order structures and the number of fingers. C2H2 zinc finger proteins contain from 1 to more than 30 figures. Based on the number and the pattern of the fingers, most of the proteins can be classified into one of three groups: triple-C2H2, multiple-adjacent-C2H2, and separated-paired-C2H2 finger proteins. In contrast to proteins with triple-C2H2 fingers, proteins with multiple-adjacent-C2H2 fingers can bind multiple, different ligands. Proteins with a number of separated-paired fingers bind to the target by means of only a single pair.  相似文献   

3.
4.
Hairpin RNA: a secondary structure of primary importance   总被引:4,自引:0,他引:4  
An RNA hairpin is an essential secondary structure of RNA. It can guide RNA folding, determine interactions in a ribozyme, protect messenger RNA (mRNA) from degradation, serve as a recognition motif for RNA binding proteins or act as a substrate for enzymatic reactions. In this review, we have focused on cis-acting RNA hairpins in metazoa, which regulate histone gene expression, mRNA localization and translation. We also review evolution, mechanism of action and experimental use of trans-acting microRNAs, which are coded by short RNA hairpins. Finally, we discuss the existence and effects of long RNA hairpin in animals. We show that several proteins previously recognized to play a role in a specific RNA stem-loop function in cis were also linked to RNA silencing pathways where a different type of hairpin acts in trans. Such overlaps indicate that the relationship between certain mechanisms that recognize different types of RNA hairpins is closer than previously thought. Received 21 November 2005; received after revision 3 January 2006; accepted 11 January 2006  相似文献   

5.
6.
7.
The terminal RNA uridylyltransferases (TUTases) catalyze transfer of UMP residues to the 3' hydroxyl group of RNA. These activities are widespread among eukaryotes and appear to be involved in a variety of RNA-processing pathways. Recent studies of RNA editing in trypanosomatids have provided the first insights into the biological functions of RNA uridylyltransferases, which had eluded biochemical identification despite 30-year-old evidence of such activities in mammals and plants. Comparative sequence analysis of trypanosomal TUTases and their homologs revealed by large-scale genomic projects demonstrates a significant level of biochemical and structural diversity between putative uridylyltransferases. The conserved catalytic domain has acquired additional protein modules and appears to have adapted to perform functionally distinct tasks of guided U-insertion into mRNA and constrained addition of an oligo[U] tail to guide RNAs. Here I discuss the current knowledge of this novel enzyme family and possible roles of RNA uridylylation in the regulation of gene expression.  相似文献   

8.
In plants, RNA editing is a process for converting a specific nucleotide of RNA from C to U and less frequently from U to C in mitochondria and plastids. To specify the site of editing, the cis-element adjacent to the editing site functions as a binding site for the trans-acting factor. Genetic approaches using Arabidopsis thaliana have clarified that a member of the protein family with pentatricopeptide repeat (PPR) motifs is essential for RNA editing to generate a translational initiation codon of the chloroplast ndhD gene. The PPR motif is a highly degenerate unit of 35 amino acids and appears as tandem repeats in proteins that are involved in RNA maturation steps in mitochondria and plastids. The Arabidopsis genome encodes approximately 450 members of the PPR family, some of which possibly function as trans-acting factors binding the cis-elements of the RNA editing sites to facilitate access of an unidentified RNA editing enzyme. Based on this breakthrough in the research on plant RNA editing, I would like to discuss the possible steps of co-evolution of RNA editing events and PPR proteins. Received 30 September 2005; received after revision 5 November 2005; accepted 28 November 2005  相似文献   

9.
The glycoprotein hormone receptor family is peculiar because, in contrast to other G protein-coupled receptors, a large N-terminal extracellular ectodomain is responsible for hormone recognition. Hormone-receptor pairs have evolved in such a manner that a limited number of positions both at the 'seat-belt' domain of the hormone and the leucine-rich repeats of the receptor, play attractive and repulsive interactions for binding and specificity, respectively. Surprisingly, the constitutive activity of the receptor, mostly modulated by highly conserved amino acids within the heptahelical domain of the receptor (i.e., outside the hormone binding region), also regulates effectiveness of hormone recognition by the extracellular part. In this review we analyze, at the molecular level, these important discriminating determinants for selective binding of glycoprotein hormones to their receptors, as well as natural mutations, observed in patients with gestational hyperthyroidism or ovarian hyperstimulation syndrome, that modify the selectivity of binding.  相似文献   

10.
Small heat shock/alpha-crystallin proteins are defined by conserved sequence of approximately 90 amino acid residues, termed the alpha-crystallin domain, which is bounded by variable amino- and carboxy-terminal extensions. These proteins form oligomers, most of uncertain quaternary structure, and oligomerization is prerequisite to their function as molecular chaperones. Sequence modelling and physical analyses show that the secondary structure of small heat shock/alpha-crystallin proteins is predominately beta-pleated sheet. Crystallography, site-directed spin-labelling and yeast two-hybrid selection demonstrate regions of secondary structure within the alpha-crystallin domain that interact during oligomer assembly, a process also dependent on the amino terminus. Oligomers are dynamic, exhibiting subunit exchange and organizational plasticity, perhaps leading to functional diversity. Exposure of hydrophobic residues by structural modification facilitates chaperoning where denaturing proteins in the molten globule state associate with oligomers. The flexible carboxy-terminal extension contributes to chaperone activity by enhancing the solubility of small heat shock/alpha-crystallin proteins. Site-directed mutagenesis has yielded proteins where the effect of the change on structure and function depends upon the residue modified, the organism under study and the analytical techniques used. Most revealing, substitution of a conserved arginine residue within the alpha-crystallin domain has a major impact on quaternary structure and chaperone action probably through realignment of beta-sheets. These mutations are linked to inherited diseases. Oligomer size is regulated by a stress-responsive cascade including MAPKAP kinase 2/3 and p38. Phosphorylation of small heat shock/alpha-crystallin proteins has important consequences within stressed cells, especially for microfilaments.  相似文献   

11.
12.
The 2'-5' oligoadenylate synthetases (OAS) are interferon-induced antiviral enzymes that recognise virally produced dsRNA and initiate an RNA destabilisation within the infected cell. We compared the structure of OAS to that of poly adenosine polymerase (PAP) and the class I CCA-adding enzyme from Archeoglobus fulgidus (AfCCA). This comparison revealed a strong structural homology between the three enzyme families. In particular, the active sites of OAS and CCA class I enzymes are highly conserved. We conducted an extensive mutagenesis of amino acid residues within the putative active site in OAS, thereby identifying enzymatically important residues and confirming the common active site architecture for OAS and the AfCCA. Our findings also have profound implications for our understanding of the evolutionary origin of the OAS enzymes and suggest that the OAS proteins diverged from a common 3'-specific ancestor at the beginning of metazoan evolution.  相似文献   

13.
Successful completion of the cell cycle relies on the precise activation and inactivation of cyclin-dependent kinases (Cdks) whose activity is mainly regulated by binding to cyclins. Recently, a new family of Cdk regulators termed Speedy/RINGO has been discovered, which can bind and activate Cdks but shares no apparent amino acid sequence homology with cyclins. All Speedy proteins share a conserved domain of approximately 140 amino acids called “Speedy Box”, which is essential for Cdk binding. Speedy/RINGO proteins display an important role in oocyte maturation in Xenopus. Interestingly, a common feature of all Speedy genes is their predominant expression in testis suggesting that meiotic functions may be the most important physiological feature of Speedy genes. Speedy homologs have been reported in mammals and can be traced back to the most primitive clade of chordates (Ciona intestinalis). Here, we investigated the evolution of the Speedy genes and have identified a number of new Speedy/RINGO proteins. Through extensive analysis of numerous species, we discovered diverse evolutionary histories: the number of Speedy genes varies considerably among species, with evidence of substantial gains and losses. Despite the interspecies variation, Speedy is conserved among most species examined. Our results provide a complete picture of the Speedy gene family and its evolution.  相似文献   

14.
The enzymatic catalysis of polymeric substrates such as proteins, polysaccharides or nucleic acids requires precise alignment between the enzyme and the substrate regions flanking the region occupying the active site. In the case of ribonucleases, enzyme-substrate binding may be directed by electrostatic interactions between the phosphate groups of the RNA molecule and basic amino acid residues on the enzyme. Specific interactions between the nitrogenated bases and particular amino acids in the active site or adjacent positions may also take place. The substrate-binding subsites of ribonuclease A have been characterized by structural and kinetic studies. In addition to the active site (p1 ), the role of other noncatalytic phosphate-binding subsites in the correct alignment of the polymeric substrate has been proposed. p2 and p0 have been described as phosphate-binding subsites that bind the phosphate group adjacent to the 3′ side and 5′ side, respectively, of the phosphate in the active site. In both cases, basic amino acids (Lys-7 and Arg-10 in p2 , and Lys-66 in p0 ) are involved in binding. However, these binding sites play different roles in the catalytic process of ribonuclease A. The electrostatic interactions in p2 are important both in catalysis and in the endonuclease activity of the enzyme, whilst the p0 electrostatic interaction contributes only to binding of the RNA.  相似文献   

15.
16.
Small HERC proteins are defined by the presence of one RCC1-like domain and a HECT domain. Having evolved out of one common ancestor, the four members of the family exhibit a high degree of homology in genomic organization and amino acid sequence, thus it seems possible that they might accomplish similar functions. Here we show that small HERC proteins interact with each other and localize to the same cellular structures, which we identify as late endosomes and lysosomes. We demonstrate interaction of HERC3 with the ubiquitin-like proteins hPLIC-1 and hPLIC-2 and we establish interaction of HERC5 with the metastasis suppressor Nm23B. While hPLIC proteins are not ubiquitinated by HERC3, HERC5 plays an important role in ubiquitination of Nm23B. In summary, although small HERC proteins are highly homologous showing the same subcellular distribution, they undergo different molecular interactions.  相似文献   

17.
18.
19.
Small heat shock proteins: molecular structure and chaperone function   总被引:17,自引:0,他引:17  
Small heat shock proteins (sHSPs) associate with nuclei, cytoskeleton and membranes, and as molecular chaperones they bind partially denatured proteins, thereby preventing irreversible protein aggregation during stress. sHSP monomers consist of a conserved α-crystallin domain of approximately 90 amino acid residues, bordered by variable amino- and carboxy-terminal extensions. The sHSPs undergo dynamic assembly into mono- and poly-disperse oligomers where the rate of disassembly affects chaperoning. The α-crystallin domain contains several β-strands organized into two β-sheets responsible for dimer formation, the basic building block of most sHSPS. The amino-terminal extension modulates oligomerization, subunit dynamics and substrate binding, whereas the flexible carboxy-terminal extension promotes solubility, chaperoning and oligomerization, the latter by inter-subunit linkage. Crystallization studies have revealed sHSP structure and function. Additionally, site-directed mutagenesis, biophysical investigations, functional studies and the discovery of relationships between mutated sHSPs and diseases have illuminated the role of sHSP within cells. Received 8 May 2005; received after revision 24 June 2005; accepted 19 July 2005  相似文献   

20.
Alcohols affect a wide array of biological processes including protein folding, neurotransmission and immune responses. It is becoming clear that many of these effects are mediated by direct binding to proteins such as neurotransmitter receptors and signaling molecules. This review summarizes the unique chemical properties of alcohols which contribute to their biological effects. It is concluded that alcohols act mainly as hydrogen bond donors whose binding to the polypeptide chain is stabilized by hydrophobic interactions. The electronegativity of the O atom may also play a role in stabilizing contacts with the protein. Properties of alcohol binding sites have been derived from X-ray crystal structures of alcohol-protein complexes and from mutagenesis studies of ion channels and enzymes that bind alcohols. Common amino acid sequences and structural features are shared among the protein segments that are involved in alcohol binding. The alcohol binding site is thought to consist of a hydrogen bond acceptor in a turn or loop region that is often situated at the N-terminal end of an alpha-helix. The methylene chain of the alcohol molecule appears to be accommodated by a hydrophobic groove formed by two or more structural elements, frequently a turn and an alpha-helix. Binding at these sites may alter the local protein structure or displace bound solvent molecules and perturb the function of key proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号