首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Most human tumours have genetic mutations in their Rb and p53 pathways, but retinoblastoma is thought to be an exception. Studies suggest that retinoblastomas, which initiate with mutations in the gene retinoblastoma 1 (RB1), bypass the p53 pathway because they arise from intrinsically death-resistant cells during retinal development. In contrast to this prevailing theory, here we show that the tumour surveillance pathway mediated by Arf, MDM2, MDMX and p53 is activated after loss of RB1 during retinogenesis. RB1-deficient retinoblasts undergo p53-mediated apoptosis and exit the cell cycle. Subsequently, amplification of the MDMX gene and increased expression of MDMX protein are strongly selected for during tumour progression as a mechanism to suppress the p53 response in RB1-deficient retinal cells. Our data provide evidence that the p53 pathway is inactivated in retinoblastoma and that this cancer does not originate from intrinsically death-resistant cells as previously thought. In addition, they support the idea that MDMX is a specific chemotherapeutic target for treating retinoblastoma.  相似文献   

2.
为了筛选可以恢复肿瘤细胞中p53功能的小分子,作者用表达野生型p53的人类直肠癌细胞HCT116建立了一株能够应答激活p53信号通路的荧光素酶报告基因的稳定细胞系,同时用表达野生型p53的人类骨肉瘤细胞U2-OS建立了一株能够应答激活p53信号通路的mCherry红色荧光蛋白报告基因的稳定细胞系.为了检测筛选p53靶向药物的有效性,利用三种已知的以p53为靶点的小分子药物(cisplatin,doxorubicin以及Nutlin-3)处理这两种稳定细胞系,结果显示p53信号通路在这两个稳定细胞系中均能够被激活.为了探索小分子RNA作为恢复p53功能的靶标药物,并进一步验证这两种细胞模型用于药物筛选的可行性,分别检测了MDM2和MDMX的5个不同shRNA.通过比较HCT116稳定细胞的荧光素酶活性和U2-OS稳定细胞中荧光蛋白的荧光强度,我们筛选出了有效沉默MDM2或MDMX的shRNA.数据表明,这两种细胞模型不仅可用作筛选激活p53的小分子化合物的平台,而且可用于筛选激活p53信号通路的小分子RNA.  相似文献   

3.
4.
L F Parada  H Land  R A Weinberg  D Wolf  V Rotter 《Nature》1984,312(5995):649-651
The protein p53 is highly expressed in a large variety of transformed cell types originating from diverse species. These include cells transformed by Simian virus 40 (SV40), adenovirus and Abelson virus, as well as a variety of chemically transformed cells. Substantial amounts of p53 are also present in certain non-transformed cells, for example, some embryonic tissues. The protein may be localized in different cellular compartments in normal and transformed cells. The strong correlation between tumorigenicity and high levels of p53 suggests an important role of p53 in tumorigenesis. We report here experiments in which we have co-transfected the murine cellular gene encoding for p53 with a ras gene into primary rat embryo fibroblasts. Our results indicate that the p53-encoding gene can play a causal role in the conversion of normal fibroblasts into tumorigenic cells.  相似文献   

5.
6.
Role for the p53 homologue p73 in E2F-1-induced apoptosis   总被引:20,自引:0,他引:20  
  相似文献   

7.
本研究以研发新型小分子MDM2抑制剂为目的,建立了以分子对接为基础的虚拟筛选流程.利用虚拟筛选流程对SPECS化合物库的分子进行类药性筛选、分子对接粗筛、二次筛选以及排序挑选,并通过细胞实验验证这些分子激活p53并抑制肿瘤细胞生长的活性.结果表明M12能够激活p53及其下游信号通路,抑制肿瘤细胞周期并促进肿瘤细胞凋亡.M12与已知MDM2-p53抑制剂结构完全不同,是一种潜在的癌症治疗候选药物.  相似文献   

8.
Human p53 gene localized to short arm of chromosome 17   总被引:7,自引:0,他引:7  
The p53 gene codes for a nuclear protein that has an important role in normal cellular replication. The concentration of p53 protein is frequently elevated in transformed cells. Transfection studies show that the p53 gene, in collaboration with the activated ras oncogene, can transform cells. Chromosomal localization may provide a better understanding of the relationship of p53 to other human cellular genes and of its possible role in malignancies associated with specific chromosomal rearrangements. A recent study mapped the human p53 gene to the long arm of chromosome 17 (17q21-q22) using in situ chromosomal hybridization. Here, by Southern filter hybridization of DNAs from human-rodent hybrids, we have localized the p53 gene to the short arm of human chromosome 17.  相似文献   

9.
P R Yew  A J Berk 《Nature》1992,357(6373):82-85
  相似文献   

10.
构建了慢病毒载体表达MP1多肽的RFP融合蛋白(RFP-MP1),并研究了它对人肺腺癌细胞株H1299和人骨髓瘤细胞株U2-OS增殖的影响.U2-OS和H1299细胞中RFPMP1的表达导致了RB在蛋白水平上的积累,使细胞生长受到抑制.此外,细胞流式结果发现RFP-MP1使细胞周期阻滞在G1期.进一步研究表明RFP-MP1能够阻滞RB对E2F活性的抑制.这些结果表明,11肽的MP1能够上调肿瘤细胞中RB蛋白的表达水平并且抑制其生长.  相似文献   

11.
Tumorigenesis is a multi-step process that requires activation of oncogenes and inactivation of tumour suppressor genes. Mouse models of human cancers have recently demonstrated that continuous expression of a dominantly acting oncogene (for example, Hras, Kras and Myc) is often required for tumour maintenance; this phenotype is referred to as oncogene addiction. This concept has received clinical validation by the development of active anticancer drugs that specifically inhibit the function of oncoproteins such as BCR-ABL, c-KIT and EGFR. Identifying additional gene mutations that are required for tumour maintenance may therefore yield clinically useful targets for new cancer therapies. Although loss of p53 function is a common feature of human cancers, it is not known whether sustained inactivation of this or other tumour suppressor pathways is required for tumour maintenance. To explore this issue, we developed a Cre-loxP-based strategy to temporally control tumour suppressor gene expression in vivo. Here we show that restoring endogenous p53 expression leads to regression of autochthonous lymphomas and sarcomas in mice without affecting normal tissues. The mechanism responsible for tumour regression is dependent on the tumour type, with the main consequence of p53 restoration being apoptosis in lymphomas and suppression of cell growth with features of cellular senescence in sarcomas. These results support efforts to treat human cancers by way of pharmacological reactivation of p53.  相似文献   

12.
The FBXW7/hCDC4 gene encodes a ubiquitin ligase implicated in the control of chromosome stability. Here we identify the mouse Fbxw7 gene as a p53-dependent tumour suppressor gene by using a mammalian genetic screen for p53-dependent genes involved in tumorigenesis. Radiation-induced lymphomas from p53+/- mice, but not those from p53-/- mice, show frequent loss of heterozygosity and a 10% mutation rate of the Fbxw7 gene. Fbxw7+/- mice have greater susceptibility to radiation-induced tumorigenesis, but most tumours retain and express the wild-type allele, indicating that Fbxw7 is a haploinsufficient tumour suppressor gene. Loss of Fbxw7 alters the spectrum of tumours that develop in p53 deficient mice to include a range of tumours in epithelial tissues such as the lung, liver and ovary. Mouse embryo fibroblasts from Fbxw7-deficient mice, or wild-type mouse cells expressing Fbxw7 small interfering RNA, have higher levels of Aurora-A kinase, c-Jun and Notch4, but not of cyclin E. We propose that p53-dependent loss of Fbxw7 leads to genetic instability by mechanisms that might involve the activation of Aurora-A, providing a rationale for the early occurrence of these mutations in human cancers.  相似文献   

13.
Amplified cellular genes in mammalian cells frequently manifest themselves as double minute chromosomes (DMs) and homogeneously staining regions of chromosomes (HSRs). With few exceptions both karyotypic abnormalities appear to be confined to tumour cells. All vertebrates possess a set of cellular genes homologous to the transforming genes of RNA tumour viruses, and there is circumstantial evidence that these cellular oncogenes are involved in tumorigenesis. We have recently shown that DMs and HSRs in cells of the mouse adrenocortical tumour Y1 and an HSR in the human colon carcinoma COLO320 contain amplified copies of the cellular oncogenes c-Ki-ras and c-myc, respectively. Both DMs and HSRs are found with remarkable frequency in cells of human neuroblastomas. We show here that a DNA domain detectable by partial homology to the myc oncogene is amplified up to 140-fold in cell lines derived from different human neuroblastomas and in a neuroblastoma tumour, but not in other tumour cells showing cytological evidence for gene amplification. By in situ hybridization we found that HSRs are the chromosomal sites of the amplified DNA. The frequency with which this amplification appears in cells from neuroblastomas and its apparent specificity raise the possibility that one or more of the genes contained within the amplified domain contribute to tumorigenesis.  相似文献   

14.
15.
目的 :研究肝细胞肝癌中突变型P5 3和MDM2蛋白的表达对临床预后判断的意义。方法 :应用免疫组织化学方法 ,检测 72例原发性肝细胞肝癌手术切除标本突变型P5 3、MDM2蛋白的表达 ;与临床病理学指标和术后生存期进行分析比较。结果 :突变型P5 3蛋白阳性 2 8例(38 89% ) ,MDM2蛋白阳性 2 3例 (31 94 % ) ,二者阳性表达有相关性 (r =0 2 4 8,P <0 0 5 )。突变型P5 3、MDM2蛋白阳性表达病例生存率明显低于突变型P5 3、MDM2蛋白阴性表达病例 (P <0 0 1)。突变型P5 3和MDM2蛋白表达均阳性病例 13例 (18 0 6 % ) ,中位生存期的生存率最低。单因素及多因素分析显示 ,突变型P5 3蛋白表达、MDM2蛋白表达、肿瘤大小与中位生存期的生存率有关 ,MDM2是统计学上最有意义的独立预后指标 (P <0 0 0 0 1)。结论 :应用免疫组织化学方法检测突变型P5 3和MDM2蛋白的表达可作为原发性肝细胞肝癌预后判断的指标。  相似文献   

16.
17.
The tumor suppressor p53 locates at the key point of cell growth or apoptosis balance, and the expression level of p53 is tightly controlled by ubiquitin ligases including MDM2. Upon DNA damage stresses, p53 was accumulated and activated, leading to cell cycle arrest or apoptosis. We previously showed that Smad ubiquitylation regulatory factor 1/2 (Smurf1/2) promotes p53 degradation by interacting with and stabilizing MDM2, and consequently enhancing MDM2-mediated ubiquitylation of p53. However, it is unclear how the Smurf1-MDM2 interaction is regulated in response to DNA damage stress. Here, we show that in response to etoposide treatment Smurf1 dissociates from MDM2, resulting in MDM2 destabilization and p53 accumulation. The negative regulation of Smurf1 on apoptosis is released. Notably, this dissociation is a slow process rather than a rapid response, implicating high expression of Smurf1 might confer the resistance against p53 activation. Consistent with this notion, we observed that Smurf1/2 ligases are highly expressed in colon cancer, esophageal squamous cell carcinoma and pancreatic cancer tissues, suggesting the oncogenic tendency of Smurf1/2.  相似文献   

18.
The human mind and body respond to stress, a state of perceived threat to homeostasis, by activating the sympathetic nervous system and secreting the catecholamines adrenaline and noradrenaline in the 'fight-or-flight' response. The stress response is generally transient because its accompanying effects (for example, immunosuppression, growth inhibition and enhanced catabolism) can be harmful in the long term. When chronic, the stress response can be associated with disease symptoms such as peptic ulcers or cardiovascular disorders, and epidemiological studies strongly indicate that chronic stress leads to DNA damage. This stress-induced DNA damage may promote ageing, tumorigenesis, neuropsychiatric conditions and miscarriages. However, the mechanisms by which these DNA-damage events occur in response to stress are unknown. The stress hormone adrenaline stimulates β(2)-adrenoreceptors that are expressed throughout the body, including in germline cells and zygotic embryos. Activated β(2)-adrenoreceptors promote Gs-protein-dependent activation of protein kinase A (PKA), followed by the recruitment of β-arrestins, which desensitize G-protein signalling and function as signal transducers in their own right. Here we elucidate a molecular mechanism by which β-adrenergic catecholamines, acting through both Gs-PKA and β-arrestin-mediated signalling pathways, trigger DNA damage and suppress p53 levels respectively, thus synergistically leading to the accumulation of DNA damage. In mice and in human cell lines, β-arrestin-1 (ARRB1), activated via β(2)-adrenoreceptors, facilitates AKT-mediated activation of MDM2 and also promotes MDM2 binding to, and degradation of, p53, by acting as a molecular scaffold. Catecholamine-induced DNA damage is abrogated in Arrb1-knockout (Arrb1(-/-)) mice, which show preserved p53 levels in both the thymus, an organ that responds prominently to acute or chronic stress, and in the testes, in which paternal stress may affect the offspring's genome. Our results highlight the emerging role of ARRB1 as an E3-ligase adaptor in the nucleus, and reveal how DNA damage may accumulate in response to chronic stress.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号