共查询到18条相似文献,搜索用时 93 毫秒
1.
目的 在不依赖真实标签的情况下利用图像样本关系识别被疟疾寄生虫感染的细胞。方法 采用一种能够提取样本间关系的无监督疟疾识别方法,并提出了一个由3个模块组成的样本关系注意力嵌入(Sample Correlation Attention Embedding, SCAE)模型。特征和关系初始化模块用于将原始图像映射为特征向量,并建立疟疾细胞之间的初始相关性矩阵。图注意力编码器模块通过一个带有注意力机制和图重构技术的图卷积网络进一步学习样本间特征和他们的关系信息。深度特征聚类模块用来预测细胞是否被疟疾感染。结果 将SCAE模型与一些最新的无监督算法进行了比较,以验证其在疟原虫识别任务中的有效性。结果表明,SCAE算法可达到94.8%的准确率、86.8%的标准化互信息(NMI)指标和84.7%的调整互信息(AMI)指标。结论 通过对SCAE模型评估,证明了该方法具有强大的疟疾识别能力,是当前最优的无监督疟疾识别方法。 相似文献
2.
【目的】为了充分利用动态的人体骨架特征,提高行为识别精度,提出一种基于人体时空骨架特征的图卷积行为识别算法。【方法】首先在空间上确定主关节点,再融合各关节点与主关节点之间的向量和关节点间的骨骼长度,获取瞬时状态下关节点的相对位置关系;然后计算相邻两帧之间由相同关节点构成的时序动作信息来描述运动状态;最后,将时空信息融合到时空图卷积网络中,进行端到端训练。【结果】与时空图卷积网络识别算法相比,在400分类Kinetics行为识别数据集上的Top-1和Top-5指标分别提升了1.78%和1.77%,在NTU RGB+D数据集的两个基准上的Top-1分别提升4.13%和2.61%。【结论】提出的基于人体时空骨架特征的图卷积行为识别算法是有效实用的。 相似文献
3.
遥感影像分类与识别是近年来深度学习以及图像分类与识别研究的热点,其中一个关键问题是因样本数据集的数据较少而极易出现过拟合。许多图像分类的模型和方法并不完全适用于遥感影像分类,将小样本学习与遥感影像处理结合起来,实现遥感影像数据增强和识别模型优化是一个可行的思路。根据小样本学习的发展现状,针对特征提取、模型分类方法,归纳总结了典型学习方法的原理及其在相关领域的应用; 分析遥感影像处理的现状和存在问题,基于适用场景、优缺点对各方法进行了比较; 通过分析小样本学习在高分遥感影像分类与识别上的应用,发现引入注意力机制和迁移学习后,小样本学习能够用于样本数据量小的遥感影像分类。 相似文献
4.
针对基于深度学习的调制识别算法对带标签样本需求量过大的问题,采用基于元学习思想的多任务训练策略,通过大量不同的任务训练网络来获取一种跨任务的信号识别能力,使得网络在面对新信号类别时仅需少量样本就能快速适应。为更全面地提取信号样本的特征,设计了一种由卷积神经网络和长短时记忆网络并联组成的混合特征并行网络,通过度量样本特征向量间距离的方式完成识别任务;并引入可同时考虑信号类内与类间距离的联合损失函数,以使信号样本特征在度量空间内的分布能更加紧凑,从而实现更高效的相似性比对。实验结果表明,该算法在仅有5个带标签信号样本条件下最高可达到88.43%的识别准确率。 相似文献
5.
光谱分类识别一直是天文学家研究中的基础问题,也是LAMOST巡天计划的一项重要任务.从LAMOST发布的海量天体光谱数据库中选取F、G、K 3种型星光谱数据,采用深度学习模型进行分类识别研究和对比实验研究,解决原有方法对光谱分类可信度低的问题.实验结果证明:对于F、G、K 3种型星的分类精确度问题,深度学习方法明显优于原有其他分类方法. 相似文献
6.
计算机辅助设计(CAD)模型是一种带有顶点信息和网格信息的三维数据,三维模型数据存储方式常见的有点云、体素、网格模型等是典型的非欧氏空间数据。为了改进现有方法利用深度学习训练CAD模型的分类时,常有丢失局部信息或局部信息提取不足的情况。针对这种非欧氏空间的CAD数据,提出了一个结合CAD数据本身特点的基于图卷积的分类模型。首先通过图卷积网络(GCN)计算顶点的邻接矩阵和顶点的度矩阵。针对CAD模型的特点提出了不同于K近邻(KNN)的方法,直接根据CAD模型面片信息构建计算所需的邻接矩阵。其次,图卷积网络可以聚合邻近顶点的信息,设计通过拼接两层图卷积网络来提取不同尺度的局部特征。结果表明:在ModelNet40 CAD模型数据集上,若采用CAD模型面片信息建图的方法,本文方法为91.2%。而采用KNN建图的方法虽然比PointNet++模型低1%的精确度,比KD-NET模型低0.9%的精确度,但参数量要比PointNet++减少0.54 MB,比KD-NET减少6.54 MB。可见本文模型结合了CAD模型的特点和图卷积聚合邻接顶点提取局部信息的优势,使得分类的精确度相比PointNet++提高0.6%,用更少的模型参数量得到了更高的分类精确度。 相似文献
7.
多变量时间序列(multivariate time series, MTS)分类任务旨在确定多变量时间序列样本的标签。多变量时间序列数据存在时序关系和样本相似性关系等丰富的关系信息,然而现有的算法未能充分利用关系信息导致分类性能难以提升。基于此,文章提出一种基于图卷积网络(graph convolutional network, GCN)的多变量时间序列分类方法,通过挖掘样本间的潜在关系来提高分类性能。为了有效表示样本关系,设计基于样本相似度的构图规则,对样本数据进行建模从而将样本的时序特征和潜在关系信息映射到图空间中,提出基于图卷积的分类模型,通过聚合样本特征来捕获有利于分类的潜在样本关系,更新到样本自身特征向量以提升分类精度。在11个公共数据集上的大量实验结果表明,该文所提算法优于12种对比算法,可见通过挖掘时间序列数据之间潜在的关系用于分类对分类结果具有重要影响,从而为处理时间序列分类问题提供一种新的途径。 相似文献
8.
对于多类别的细粒度情感分类任务,目前主流的少样本学习方法不能取得较好的性能。针对这一问题,提出一种基于联合学习的少样本多类别情感分类方法。采用基于替换词检测任务的少样本学习方式,将回归和分类的替换词检测模板以及标签描述词同时添加至输入语句,从而将细粒度情感分类任务同时建模为分类问题和回归问题。在此基础上,设计了不同的融合方法进行联合学习。实验结果表明,与主流少样本学习方法相比,该方法在F1-Score和正确率上都取得更优的结果。 相似文献
9.
为了提高零样本汉字识别的准确率,克服传统方法在未见汉字识别上的局限性,并进一步改进以偏旁部首为基元的汉字识别方法,本研究提出了一种以注意力机制为基础的编码器-解码器架构的部首计数分析网络,用于零样本汉字识别问题。在编码器阶段,引入了多尺度部首计数模块;而在解码器阶段,则运用了多尺度注意力机制。本文将一个汉字看作是由若干偏旁部首及其空间结构组成的序列,通过计算偏旁部首及空间结构的数量,实现了对汉字的有效识别。实验结果表明,在SCUT-SPCC和CTW两个基准数据集上,本文所提出的新模型在零样本汉字识别方面表现优异。本研究能够更好地捕捉汉字的特征信息,并实现对未见汉字的准确识别。这对汉字识别领域的研究与应用具有重要指导意义,可为相关领域的研究提供新思路和方法。 相似文献
10.
现有元学习方法的初始模型在训练过程中会偏向于某些任务,从而影响元学习方法的泛化能力。针对以上不足,提出了基于正则化元学习算法(Regularized Meta Learning,REML)用于小样本图像分类。该算法通过在元学习的目标函数中添加正则化项,以阻止元学习的初始模型偏向于部分训练任务,使元学习模型具有更强适应新任务的能力。此外针对元学习过程中涉及二阶求导使得计算量较大的不足,采用一阶导数近似二阶导数,以减小元学习模型训练所需计算量。在mini Image Net、CUB-200和CIFAR-100这3个数据集上进行的实验验证本文算法性能。实验结果表明,提出的算法能够增强元学习的泛化能力,从而提高小样本图像分类的性能,同时减小元学习算法训练参数的计算量。 相似文献
11.
针对传统的遥感图像目标检测中面临的小样本以及目标样本分布不均衡等问题, 提出了一种基于改进的卷积神经网络(convolutional neural network, CNN)的遥感图像小样本目标检测算法. 首先, 该算法利用 $K$ 近邻($K$-nearest neighbor, kNN)回归分别对每个点和卷积层提取特征构建局部邻域; 同时, 通过最大池化聚合所有局部特征进行全局特征表示; 最后, 采用全连接层与缩放指数型线性单元(scaled expected linear unit, SELU)激活函数计算各类别对应的概率并分类. 实验结果表明, 该算法能够更有效地融合局部特征, 提高了遥感图像小样本目标识别与检测的精度, 同时保持信息的非局部扩散. 相似文献
12.
针对现有机器人基于深度网络的地形识别方法准确率低、网络训练时间长且需要大量训练数据的问题,提出一种基于深度残差网络与迁移学习的地形识别方法。首先,基于Resnet网络构建一种深度残差网络;其次,利用现有Imagenet大型数据集对构建的深度残差网络进行预训练,作为预训练网络,保留预训练网络除全连接层的训练权重,实现预训练网络大规模的参数迁移;最后,利用自建地形图像数据集对深度残差网络的全连接层进行训练,实现深度残差网络微调。实验结果表明,通过迁移学习的方法,利用深度残差网络对石子路、水泥路、砖地、沥青、草地、泥地6种自建地形图像进行分类,平均准确率达到了99.3%,同时网络训练时间也显著降低。 相似文献
13.
路面裂缝形状不规则复杂程度高。传统路面裂缝识别技术需要对路面图像进行复杂预处理工作进行识别,不能自动化对路面裂缝图像进行分类。为提高对路面裂缝识别精度和效率,本文将基于深度学习方法提出一种自动识别路面裂缝并能减少图像预处理工作量的方法。首先,将原始图像切割为小样本图像,根据图像多特征进行分类,各选取相同类型样本2000张图像构建数据集;其次,利用双线性内插法对裁剪后图像进行上采样,凸显图像特征便于神经网络学习;最后,使用深度学习神经网络对训练样本进行特征提取训练模型。实验结果表明:ResNet101模型评估指标均优于其他深度学习模型和机器学习模型,模型测试精度达0.898,kappa系数为0.815。 相似文献
14.
传统人脸识别方法手工设计特征过程复杂、识别率较低,对于开集人脸识别通用深度学习分类模型特征判别能力较弱。针对这两方面的不足,提出了一种以分类损失与中心损失相结合作为模型训练监督信号的深度卷积神经网络。首先,利用构建的应用场景数据集优调从公共数据集获得初始化参数的深度人脸识别模型,解决训练数据过小和数据分布差异问题,同时提高模型训练速度;然后,以传统损失函数和新的中心损失作为迁移学习过程中的监督信号,使得类内聚合、类间分散,提高模型输出人脸特征的判别能力;最后,对人脸特征进行主成分分析,进一步去除冗余特征,降低特征复杂度,提高人脸识别准确率。实验结果表明,与传统人脸识别算法相比该算法可以自动进行特征提取,并且相对于通用深度学习分类模型该算法通过度量学习使特征表示更具判别力。在自建测试集和LFW、YouTube Faces标准测试集上都取得了较高的识别率。 相似文献
15.
16.
针对ML-GCN中标签共现嵌入维度过高影响模型分类性能和ML-GCN中没有充分发掘标签之间不对称关系的问题,提出一种基于图注意力网络的多标签图像分类模型ML-GAT;ML-GAT模型首先对高维标签语义嵌入矩阵进行降维;然后通过降维后的低维标签语义嵌入表示和标签类别共现图得到标签共现嵌入;与此同时ML-GAT将多标签原始... 相似文献
17.
刘金霞 《兰州理工大学学报》2021,47(4):106-110
对无线电信号分类的相关技术进行了研究,提出一种新的基于残差神经网络和群卷积神经网络的深度学习网络来实现无线电的分类.该神经网络基于同相分量信号和正交分量信号组成的样本进行训练,实验结果显示,在10 dB时对24种信号的分类准确率达到了95.69%,揭示了该网络架构的有效性与实用性. 相似文献
18.
结合机器人的工作原理以及卷积神经网络(CNN)在图像分类中的应用,提出了一种基于卷积神经网络的壁面障碍物检测识别算法.首先,以壁面障碍物准确识别为目标,构建壁面障碍物图像库;然后,通过对VGG-16网络简化后进行优化,得到适合壁面障碍物准确识别的卷积神经网络模型.在此基础上,设计该网络由输入层、4层卷积层、2层池化层、1层全连接层以及输出层组成,进一步利用3×3卷积核对训练样本进行卷积操作,并将所获取的特征图以2×2领域进行池化操作.重复上述操作后,通过学习获取并确定网络模型参数,得到最佳网络模型.实验结果表明,障碍物的识别准确率可达99.0%,具有良好的识别能力. 相似文献