首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
分数阶时滞微分方程积分边值问题解的存在性   总被引:3,自引:0,他引:3  
研究一类具有Riemann—Liouville型分数导数的分数阶时滞微分方程积分边界问题。根据方程及边界条件的特点,给出了上下解的定义,并证明了比较定理。利用上下解方法,结合单调迭代技术以及度理论,得到了边值问题解的存在性定理、惟一性定理以及多解性定理多个结论。  相似文献   

2.
通过建立新的比较定理,利用上下解和单迭代方法,在下解α(t)与上解β(t)满足条件:α(t)≤β(t),任意t∈[0,2л],但α(0)≤α(2π),β(0)≥β(2π)的条件下获得了一类一阶非线性积分-微分方程周期边值问题的极佳解的存在性定理。  相似文献   

3.
利用上下解方法与Schauder不动点定理,研究了一类非线性分数阶边值问题解的存在性:{D_(0+)~αu(t)=f(t,u(t)),t∈[0,1],u(0)=u(1)=u′(0)=u′(1)=0,其中α∈(3,4],是一实数,D_(0+)~α是Riemann-Liouville分数阶导数,推广和改进了已有的结果.  相似文献   

4.
为讨论分数阶微分方程泛函边值问题解的存在性,利用迭合度理论对其进行研究,得到了一定条件下该边值问题解的存在性。该研究减弱了相应的条件,推广了相关结果。  相似文献   

5.
分数阶边值问题被广泛应用于各种领域,而只有正解才有实际意义。文中运用单调迭代方法和格林函数,讨论一类非线性分数阶微分方程边值问题,得到其两迭代正解的存在性,使原有结果得到了进一步的改进。  相似文献   

6.
利用锥中不动点理论得到了一类分数阶微分方程正解的存在性,并结合上下解方法得到了方程解的逼近序列.  相似文献   

7.
于瑶 《科学技术与工程》2011,(26):6253-6257
研究了非线性分数阶微分方程边值问题Dα0+u(t)+f(t,u(t))=0,0相似文献   

8.
研究了含参数的分数阶微分方程边值问题,用锥拉伸和压缩不动点定理及Leggett-Williams不动点定理得到了解的存在性和多重性。  相似文献   

9.
运用了上下解和单调迭代方法,研究带有非线性边界条件的分数阶微分方程解的存在性.  相似文献   

10.
通过Schauder不动点定理和Banach压缩映射原理,得到了一类非线性反周期分数阶脉冲微分方程边值问题解的存在性和唯一性。  相似文献   

11.
研究了Riemann-Liouville分数阶微分方程边值问题存在惟一解的充分必要条件。得到了边值问题正解的存在性和惟一性,且构造了迭代序列。  相似文献   

12.
用锥压拉不动点定理和Leggett-Williams不动点定理,以及一些分析的技巧研究了下面分数阶微分方程边值问题正解的存在性,得到了这类边值问题其正解存在的充分条件。  相似文献   

13.
该文研究了一类带有偏差量的任意分数阶非线性微分方程边值问题正解的存在唯一性,利用锥理论及混合单调算子和算子不动点定理获得了该边值问题存在唯一正解的充分条件,并给出了一个具体的例子以显示理论结果.  相似文献   

14.
利用锥上的不动点定理给出了超线性四阶微分方程的奇异边值问题一种情况下的正解的存在性.  相似文献   

15.
通过定义合适的线性空间以及范数,给出恰当的算子,在非线性项和脉冲值满足一定的条件下,分别利用压缩映像原理和krasnoselskii不动点定理,研究了分数阶脉冲微分方程组边值问题解的存在性和唯一性,并给出例子说明所需要的条件是可以满足的。  相似文献   

16.
为了拓展边值问题的基本理论,研究一类具有有限个脉冲点的Hilfer分数阶脉冲微分方程边值问题解的存在性。首先,求出微分方程等价的积分方程;其次,定义恰当的Banach空间和范数,构造合适的算子,在非线性项满足不同条件的情况下,运用Krasnoselskii不动点定理,分别得到此类边值问题存在解的充分条件;最后,通过2个实例验证研究结果的普适性。结果表明,含有Hilfer分数阶导数的脉冲微分方程边值问题的解具有存在性。运用Krasnoselskii不动点定理能够有效解决具有Hilfer分数阶脉冲微分方程边值问题解的存在性问题,丰富了分数阶微分方程理论,为解决其他类型的脉冲分数阶微分方程边值问题提供了借鉴与参考。  相似文献   

17.
二阶非线性积分-微分方程边值问题的正解   总被引:1,自引:2,他引:1  
用锥映射不动点定理讨论了二阶积分—微分方程边值问题正解的存在性 ,把所得的结果应用于四阶常微分方程边值问题 ,获得了新的正解的存在性结果  相似文献   

18.
利用上下解方法给出了二阶脉冲微分方程奇异边值问题PC1([0,1],R+)正解存在的充分必要条件。  相似文献   

19.
研究了Banach空间中奇异边值问题正解的存在性。通过构造一个特殊的锥,利用严格集压缩算子的不动点指数理论,建立了该边值问题的近似问题至少有两个正解的存在性。然后借助Ascoli-Arzela定理,利用近似问题解序列的相对紧性,得到边值问题至少有两个正解的充分条件。  相似文献   

20.
利用Leggett-Williams不动点定理,研究一类二阶脉冲微分方程非局部(m点)边值问题正解的存在性.在某些条件下,得到了它至少存在3个正解u1,u2,u3,使得‖u1‖<d,a<a(u2)且‖u3‖≥d,a(u3)≤a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号