首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
锂电池具有高能量密度、循环寿命长等优点而被广泛应用于电动汽车动力装置,但车辆运行状况复杂多变,且电池内部呈现高度非线性的性质,导致电池荷电状态(SOC)难以准确计算。为优化锂电池SOC估计精度,构建结合Warburg元件的分数阶二阶RC模型,采用自适应遗传算法进行参数辨识;融合多新息理论和扩展卡尔曼滤波算法,提出基于多新息扩展卡尔曼滤波(MIEKF)的锂离子电池SOC估计算法,并利用试验数据验证该方法的有效性,为提高SOC估计精度和车载锂电池的循环使用寿命提供了新的方法途径和实践支撑。  相似文献   

2.
针对锂离子电池荷电状态(SOC)较难准确获取的问题,依据锂电池等效电路模型,建立起各参数与SOC的联系,利用脉冲放电的数据对模型进行参数辨识.通过Mat-lab/Simulink验证了模型的正确性和精确性.将扩展卡尔曼滤波算法(EKF)融合多新息理论,建立了多新息扩展卡尔曼滤波算法(MIEKF)估计电池SOC的方法,该方法通过对旧信息的重复使用提高了EKF的估计精度.在美国城市道路循环工况(UDDS)下分别采用EKF和MIEKF算法来估计锂电池SOC,两者估计的最大误差分别为0.0176、0.0087.实验数据表明MIEKF算法估计电池SOC更准确.  相似文献   

3.
通过对不同温度和锂电池荷电状态(SOC)下电池内部参数测定和评估,分析了影响参数变化的环境因素,建立了可变参数的锂电池Thevenin模型.讨论了模型的分段依据以及相关参数的测定和拟合方法,并采用扩展卡尔曼滤波算法(EKF)对锂电池SOC进行估算,给出了基于温度修正的改进SOC估计方法.所提出的电池模型解决了现有算法中模型适用范围局限性的问题,仿真和实验结果表明,所建立的基于锂电池Thevenin模型的SOC估计方法在较宽的温度范围内都能够获得较高的估算精度.  相似文献   

4.
针对动力锂电池常用的荷电状态(SOC)估计算法存在的扩展卡尔曼滤波法精度低、无迹卡尔曼滤波法收敛速度慢等问题,在动力锂电池的Randles等效模型的基础上,通过脉冲放电实验对模型参数进行辨识;并设计了一种基于迭代扩展卡尔曼滤波(IEKF)与无迹卡尔曼滤波(UKF)联合估计的SOC估计法。在电池实验平台上设计模拟工况实验,实验分析表明:该算法的SOC初值修正速度快于EKF和UKF,计算量比UKF小,且稳态误差不超过1.5%,相对扩展卡尔曼滤波(EKF)提高了40%,是一个收敛快、计算量少、静差小的迭代估计算法。  相似文献   

5.
荷电状态(state of charge,SOC)估计是现代电池管理系统的一个重要方面.扩展卡尔曼滤波(extended Kalman filter,EKF)等基于锂电池的戴维南等效模型的方法已被广泛用于SOC估计,但其在雅可比矩阵的推导和线性化精度等方面存在不足.提出了基于变参数模型的平方根无迹卡尔曼滤波(square root unscented Kalman filter,SRUKF)方法估算SOC,该方法不需要对非线性模型进行线性化,同时平方根特性改善了状态协方差的数值性质.变参数模型是在2阶戴维南等效模型的基础上令锂电池的各项参数随电量变化而得到的,减小了因固定参数模型无法反映不同电量下参数变化造成的误差.实验验证了该方法的有效性,与现有的SOC估计方法EKF、常规的UKF以及使用固定参数模型的估计结果进行了比较,该方法的误差明显小于其他3种方法.  相似文献   

6.
针对锂电池模型参数辨识不准确以及传统无迹卡尔曼滤波(UKF)无法对噪声进行实时更新,从而导致锂电池荷电状态(SOC)估计误差偏大的问题,提出遗忘因子递推最小二乘法-自适应无迹卡尔曼滤波(FFRLS-AUKF)算法。先利用遗忘因子递推最小二乘法(FFRLS)对电池二阶RC等效电路模型进行在线参数辨识,再将所辨识的各参数传给由UKF和改进的Sage-Husa算法结合得到的AUKF,从而完成对锂电池的SOC估计,并将其与FFRLS-UKF以及离线UKF所估计的结果相比较。从对SOC估计的误差曲线和平均绝对误差以及均方根误差的数值上对比,均可得出FFRLS-AUKF的精度更高,稳定性更好。  相似文献   

7.
针对卡尔曼滤波算法在锂离子电池荷电状态的估算中存在的稳定性差、系统噪声不确定性等问题,提出了一种基于滑模变结构的卡尔曼滤波算法对锂电池荷电状态(state of charge,SOC)进行动态估算。其基本思路是建立RC等效电路模型,并应用指数趋近律滑模变结构来改善卡尔曼滤波算法的不稳定性,从而提高SOC估算精度。仿真及实验结果表明,所提出的基于滑模变结构的卡尔曼滤波算法在锂电池SOC的估算方面具有良好的精度,误差范围在3%内。  相似文献   

8.
随着电动汽车(electric vehicles, EV)的发展,电池荷电状态(state of charge, SOC)估计受到越来越多关注。荷电状态的精确估计对于电动汽车的能量管理至关重要,然而,估算精度成为限制其发展的瓶颈。本文在阻抗谱分析基础上,利用恒相元件(constant phase element, CPE)导出简化的电池阻抗模型,从而建立模型的状态方程和观测方程;针对锂电池的非线性特性,引入扩展卡尔曼滤波(extended Kalman filtering, EKF),通过在阻抗模型上与EKF算法的融合对锂离子电池进行SOC准确估算;建立电池测试台,通过仿真和电池动态工况试验验证。结果表明,与其他模型和EKF算法相比,所提出的SOC估算方法能有效提高SOC估算精度,并将误差控制在±1%以内,具有较好的收敛性和鲁棒性。  相似文献   

9.
胡洁宇  吴松荣  陆凡  刘东 《科学技术与工程》2020,20(35):14530-14535
锂电池的荷电状态(state of charge, SOC)是电池管理系统(battery management system, BMS)对锂电池进行管理的重要指标。针对传统SOC估计方法存在的精度低、计算复杂和鲁棒性差等问题,本文提出了一种基于奇异值分解无迹卡尔曼滤波(singular value decomposition unscented Kalman filter, SVD-UKF)的SOC估计方法。该方法利用无迹变换(unscented transformation,UT)提高了计算精度的同时降低了计算量,并且克服了UKF在状态协方差矩阵P非半正定时会出现滤波发散的缺点,提高了算法的鲁棒性。实验结果表明,该算法能够快速收敛于真值,并且将估算误差降低至1%。  相似文献   

10.
由于磷酸铁锂电池在多方面的优越性能,它在电动汽车领域的应用已经越来越广泛。文章针对磷酸铁锂电池,给出了其改进的PNGV模型,并通过电池恒流充放电特性和脉冲充放电特性实验,利用插值和最小二乘拟合方法进行电池模型参数辨识,实现了磷酸铁锂电池的较准确建模,并采用扩展卡尔曼滤波算法(EKF)完成了电池荷电状态(SOC)的准确估计。  相似文献   

11.
自适应卡尔曼滤波法磷酸铁锂动力电池剩余容量估计   总被引:1,自引:1,他引:0  
卡尔曼滤波法在估计动力电池的剩余容量(SOC)时,由于系统噪声的不确定,可能导致算法不收敛,而且算法的估计性能受模型精度的影响,笔者采用自适应卡尔曼滤波法来动态地估计电动汽车用磷酸铁锂动力电池的SOC。首先对电池模型进行了研究,建立了适用于SOC估计的电池模型,然后设计了相应的电池充放电实验检测到模型的参数,并进行了验证,最后将自适应卡尔曼滤波法应用到该模型,在未知干扰噪声环境下,在线估计电池的SOC。仿真结果表明:自适应卡尔曼滤波法能够实时修正微小的模型误差带来的SOC估计误差,估计精度高于卡尔曼滤波法,且自适应卡尔曼滤波法对初值误差具有修正作用。实车循环行驶实验表明算法适用于磷酸铁锂动力电池的SOC估计。  相似文献   

12.
锂离子电池的荷电状态(SOC)、健康状态(SOH)和剩余使用使命(RUL)是锂离子电池安全稳定运行的重要状态参数,本文提出一种基于充电电压上升片段的锂离子电池状态联合估计方法,实现对电池预测起点(SP)到寿命终点(EOL)的较长运行周期内SOC、SOH和RUL的联合估计.该框架在充电阶段进行SOH和RUL估计,在放电阶段进行SOC估计.首先提取电池恒流充电电压曲线片段的上升时间作为健康特征(HF),以HF作为输入,循环容量作为输出,建立最小二乘支持向量机(LSSVM)电池老化模型,对当前健康状态进行估计;采用等效电路模型对该电压区段进行非线性拟合,用拟合参数建立状态空间模型,结合无迹卡尔曼滤波算法进行SOC估计;用高斯过程回归时间序列模型对电池的健康特征序列进行建模,通过循环次数外推预测健康特征的变化趋势,并结合LSSVM老化模型,对RUL进行预测并给出置信区间.实验结果表明,所提方法具有较高的估计精度和较好的稳定性.  相似文献   

13.
电池荷电状态(SOC)的准确估计对延长电池使用寿命、提高电池利用率和保障电池安全性具有重要意义。在不同环境温度下进行了锂离子电池的基本性能试验和动态工况试验,建立了温变双极化等效电路模型。基于该模型,采用H无穷滤波算法代替传统的扩展卡尔曼滤波算法,在无需假设过程噪声和测量噪声均服从高斯分布的前提下,实现了SOC的精确估计。在考虑温变和电池模型存在误差的条件下进行验证,不同温度条件下的SOC估计最大误差保持在±0.03范围内,证明了所提出的SOC估计算法具有较高的温度适应性和鲁棒性。  相似文献   

14.
为提高锂离子荷电状态(state of charge,SOC)及健康状态(state of health,SOH)的精度,提出改进双自适应扩展卡尔曼滤波(dual adaptive extended Kalman filter,DAEKF)算法。基于二阶RC模型,建立空间状态方程;选取电池容量作为SOH的表征量,在双扩展卡尔曼滤波算法基础上引入改进的Sage-Husa自适应算法,实现系统协方差矩阵的实时更新;为降低系统计算量,进一步加入多时间尺度理论进行优化。实验结果表明,提出的算法能较准确地估计锂电池的SOC与SOH,SOC的平均误差为0.58%,SOH最大估计误差为0.8%,该算法正确有效。  相似文献   

15.
锂离子电池荷电状态的快速准确估计是电池管理系统的关键技术之一.针对锂离子电池这一动态非线性系统,通过测试分析锂离子电池的滞回特性,建立了锂离子电池的二阶RC滞回模型,并利用容积卡尔曼滤波算法对电池荷电状态进行估算.实验结果表明,该模型能较好地体现电池的动态滞回特性,而且容积卡尔曼滤波算法在估算过程中能保持较高的精度.  相似文献   

16.
针对6轮足机器人动力电池的荷电状态(state of charge, SOC)估计精度低、电池模型准确度不高等问题,提出一种基于带遗忘因子的递推最小二乘(recursive least squares with forgetting factor,FFRLS)与自适应扩展卡尔曼滤波(adaptive extended Kalman filtering,AEKF)相结合的估计算法。首先通过FFRLS算法辨识建立动力电池等效模型参数;然后利用AEKF对SOC在线估计,并为参数辨识提供准确的开路电压;最后以机器人锂电池包为对象,在动态应力测试工况(dynamic stress test , DST)下实验验证了该算法可以准确地估算动力电池SOC,SOC估计相对误差在2.5%以内。   相似文献   

17.
随着电动汽车的高效发展,逐年递增的退役动力电池回收利用已刻不容缓,对电池进行精确、可靠的荷电状态(state of charge,SOC)估计是实现电池梯次利用的关键技术。传统估计方法均未考虑对老化电池影响较高的自放电因素,本文采用在二阶RC模型基础上考虑了自放电因素的GNL电路等效模型,通过脉冲放电对模型参数进行辨识。对相应的状态空间方程利用矩阵二次型方法进行离散化,并利用自适应无迹卡尔曼滤波算法对SOC进行实时估计及更新。在间歇恒流工况和变电流工况下以老化电池为实验对象对算法进行了对比验证,结果表明双卡尔曼滤波法在初值估计不准确的时候不能及时收敛到SOC真值附近并跟随,基于二阶RC模型的自适应滤波算法估计的误差在工况后期较大,基于GNL模型的自适应滤波算法对老化电池的估计精度较高,误差在0.5%之间。结果表明该方法可使状态估计值具有较小的误差和快速跟随性,满足了SOC 估计的实际需求。  相似文献   

18.
研究有色噪声下的锂离子电池参数辨识与荷电状态(SOC)估计,并进行硬件在环实验验证.在动力电池模型的参数辨识过程中,利用带遗忘因子的偏差补偿递推最小二乘法进行偏差补偿,提高了有色噪声数据的参数辨识精度.在此基础上,利用自适应扩展卡尔曼算法进行SOC估计,使得滤波算法中的估计结果可以随着噪声统计特性的变化而自适应更新,实现了模型参数和电池状态的联合估计.最后,借助BMS测试系统模拟电池电压电流信息输出,完成了硬件在环实验以验证所提出的方法.实验结果表明,利用所提出算法估计得到的电池端电压和SOC误差分别小于10 mV和0.5%.   相似文献   

19.
A model based method which recruited the extended Kalman filter (EKF) to estimate the full state of charge (SOC) of Li-ion battery was proposed. The underlying dynamic behavior of the cell pack was described based on an equivalent circuit comprising of two capacitors and three resistors. Measurements in two tests were applied to compare the SOC estimated by model based EKF estimation with the SOC calculated by coulomb counting. Results have shown that the proposed method is able to perform a good estimation of the SOC of battery packs. Moreover, a corresponding battery management systems (BMS) including software and hardware based on this method was designed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号