首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
记单位圆盘E={z||z|<1)中满足条件f(0)=0和f~(?)(0)=1的解析函数f(z)组成的类为A。设f(z)=z+sum from k=2 to ∞ a_kz~k∈A,δ≥0,St.Ruscheweyh在[1]中定义邻域N_s(f)如下: N_δ(f)={g(z)=2+sum from k=2 to ∞ b_kz~k|sum from k=2 to ∞ k|a_k-b_k|≤δ}。[1],[2]研究了使得N_δ(f)中所有函数g(z)含于E中某单叶函数类的条件。本文的目  相似文献   

2.
设f(z)=h(z)+g(z)=z+sum (a_nz_n) from n=2 to +∞+sum(b_nz~n)from n=1 to +∞为定义在单位圆盘U上的调和映照,满足条件sum(np) from n=2 to +∞(|an|+|bn|)≤1-|b1|,证明当0相似文献   

3.
命 f_p(z)=z+∑~∞_(n=1)a~(p)_(np+1)z~(np+1) p=1,2…… (1)在|z|<1内为正则单叶,且把单位圆写象为凸域,用 K_p 表明这一函数族。命F_p(z)=z+∑~∞_(n=1)b~(p)_(np+1)z~(np+1) p=1,2…… (2)在 |z|<1内为正则单叶,且把单位圆写象为关于原点的星形领域,用 St_p 表明这一函数族。若 f_p(z)ε K_p 则 zf_p′(z)ε St_p;反过来说也对。拉赫马诺夫曾指出函数族 K_p+St_p:  相似文献   

4.
一、引言设给定函数,f(z)=sum from n=0 to ∞ c_nz~n (|z|<1),其中α_n是复数。我们使用下列符号: S_n=α_0+α_1……+α_n=S_n~(0) S_n~(p)(p>-1)定义如下: sum from n=0 to ∞ S_n~(p) x~n=1/(1-x)~(p+1) sum from n=0 to ∞α_n x~n —z平面上的闭凸集(闭凸域,直线,射线,线段,点) G_ε—包含G在其内的凸区域,且G_ε的边界点与G的距离ξ≤ε。 Cesaro(齐查罗)求和:如果=S,就说级数sum from n=0 to ∞α_n用p阶Cesaro方法[(c;p)—法]可求和,共和为S,记作sum from n=0 to ∞α_n S. 条件(A):如果函数,f(z)在|z|<1解析,在闭圆|z-x_0|≤1-x。(任意x_0,0≤x_0<1)连续,则称函数,f(z)满足条件(A)。条件(B):如果函数,f(z)在圆|z-x_0|<1-x_0有界,在点z=1有放射边界值: f(1)=f(z), 则称,f(z)满足条件(B)。  相似文献   

5.
§1.引言设函数 f(z)=z+sum from n=2 to ∞ a_nz~n∈S是单位圆内的单叶解析函数,函数 f_1(z)=sum from n=1 to ∞ a_(2n-1)z~(2n-1),|z|=γ<1,(一)戈鲁净对 f(z)及 f_1(z)有下面准确的估计(1):|f(z)|+|f(-z)|≤γ/((1-γ)~2)+γ/((1+γ)~2) (1)|f′(z)|+|f′(-z)|≤(1+γ)/((1-γ)~3)+(1-γ)/((1+γ)~3) (2)|f_1(z)|≤γ(1+γ~2)/((1-γ~2)~2),|f′_1(z)|≤(1+6γ~n+γ~4)/((1-γ~2)~3),|(zf′_1(z))/(f_1(z))|≤(1+6γ~2+γ~4)/(1-γ~4) (3)本文将证明:设 f(z)=z+sum from n=2 to ∞ c_nz~n 是星形单叶函数,F(z)=z+sum from n=2 to ∞ a_nz~n 是凸形单叶函数,函数 F_1(z)  相似文献   

6.
设Σ~1表示|z|>1上的单叶函数 g(z)=z+sum from n=1 to ∞ b_nz~(-n)所组成的类。它的逆函数类由 G(W)=W+sum from n=1 to ∞ B_nW~(-n)组成本文对n=13的情况,证实了著名的Springer猜测,即有 |B_(25)|≤208012  相似文献   

7.
1.引言设S={f(z)=z+sum from n=2 to ∞a_■z~n.;f在D:|z|<1内解析、单叶}1916年Bieberbach提出猜想:若f∈S,则(1.1)|a.|≤n,n=2,3,…,最近,Louis de Branges证明了下面的重要结果,它蕴含着Bieberbach猜想。De Branges定理,若f∈S,且(1.2)log (f(z))/z=sum from k=1 to ∞c_(?)z~k,(z∈D)则,对于n=1,2,…,有(1.3)sum from k=1 to n k(n+1-k)|Ck|~2≤4 sum from k=1 to n (n+1-k)/k. 这个不等式实际上是1971年Milin的猜想[7](例如可参阅[4,P.155])  相似文献   

8.
设f(z)=z+sum from v=1 to∞(a_vz~v)是单位圆|z|<1内的解析函数,用N记这种函数的全体.MacGregor研究了N中函数f(z)的单叶星象性,得到若干结果.本文推广了这些结果.1.概念与记号设f_p(z)=z+sum from k=1 to∞(a_(kp)+1~z~(kp+1))是|z|<1内的p次对称单叶解析函数,其全体记为S_P(P=1,2,…).特别简记S_1=S.如果f_(z)∈S_p,且有β∈[0,1)使得Re{zf′_p(z)/f_p(z)}>β(|z|相似文献   

9.
引立:设 k 次对称函数 f_L(z)=z+sum from n=1 to ∞ a_(ak+1)~((k)) z~(nk+1)在单位园|z|<1内正则单叶,命 s_k 表明这一函数族,s_1=s 即普通的单叶系数族.对于 s 中函数的系数,比伯巴赫曾臆测对于任意的正整数 n 常有|a_n|≤n,当 n=2,3,4时已真,至于一般估计现有:  相似文献   

10.
§1.设k次对称函数f_k(z)=z+sum from v=1 to∝ (avk+1) z~(vk+1)在单位圆|z|<1中正则单叶,这类函数的全对称为S_k,记σ_n~(k)=z+sum from v=1 ton(avk+1)z~(vk+1)。 舍荀证明一切σ_n~(1)(z)在圆|z|<1/4中单叶,且不能易以更大的数.伊列夫证明当n≥15时,σ_n~(1)在圆|z|<1-4(lnn/n)中单叶.  相似文献   

11.
引言设函数f(z)=z+sum from n=2 to ∞ a_nz~n (1)在图|z|>1内为正则单叶,命 S 表明这一函数族,比伯尔巴赫曾臆测对于任意的正整数 n 常有|a_n|≤n (2)当 a_n 全是实数,或 f(z)映射|z|<1成星形领域时,已成定理(1)(2)。里特勿得曾证明。|a_n|相似文献   

12.
§1.引言设 f_k(z)=z+sum from n=1 to ∞ a_(nk+1)~((k))z~(nk+1)为在单位圆|z|<1内正则且单叶的函数,用 S_k 表示该函数族,特别记 S_1=S.对于 f_1(z)∈S;f_2(z)∈S_2的相邻系数模的差,戈鲁金曾有如下之估计:[1](1) ||a_n+1|-|a_n||≤C_(1)n~(1/4)log n,(2) ||a_(2n+1)~((2))|-|a_(2n-1)~((2))||≤C_2n~(-1/4)log n.其中的 C_1,C_2以及以后的 C_3,C_4,……都是绝对常数。对于映射单位圆|z|<1为关于原点为星形领域的函数 f(z)戈鲁金亦有估计:[1],[2]  相似文献   

13.
设f(z)=z+sum from p=2(a_pz~p)是单位圆|z|<1内的解析函数,记这种函数的全体为N.文[1]证明了:只要有|z|<1内单叶函数g(z)∈N(即g(z)∈S),使得Re{f(z)/g(z)}>0,则f(z)必在|z|<1/5内是单叶的.1980年吴卓人就g(z)属于S的一个子族,把上述结果加以完善.本文推广了吴卓人的这些结果.最后,还推广了MacGregor的另一个结果.  相似文献   

14.
1.关于一些论断的介绍和说明 设函数 f(z)=z+sum from 2 to ∞(a_nZ~n) 在U={z:|2|<1}内解析且单叶,若f(U)是关于原点星形的,即,如果W∈f(U),当0≤t≤1时蕴含tW∈f(U),则f(Z)称为在U上的拟星形函数我们用S表示所有的这种函数类。柯贝函数 K(Z)=Z(1-z)~(-2) ,z∈U, 把U映射到沿着负实轴从-1/4到∞剪开的复平面上,因而K(z)属于S类。最近刘恩已经证明了  相似文献   

15.
1、前言: 设f(z)=z+sum from n=2 to ∞(G_nz~n)是单位园|z|<1内的正则单叶函数,记这种函数之全体为S。Г.М.戈鲁辛证明有准确的估计:其中等号被kocbe函数所达到。 Jenkins.J.A补充(1)式而得到:  相似文献   

16.
对于单位圆盘上的解析函数f(z),本文定义了f(z)的σ-邻域N_σ(f)及其导数的σ-邻域N′_σ(f),得到了N_σ(f)和N′σ(f)包含于单叶函数的某些子族的条件。推广了A.Kobori的结果:如果f(z)=z sum from k=2 to ∞a_kz~k满足条件sum from k=2 to ∞k~2|a_k|1≤1,则f(z)是凸函数。  相似文献   

17.
设f(z)=z+sun(a_νz~(ν))fromν=2to∞是单位圆|z|<1中的解析函数,记这种函数的全体为 N.MacGregor 研究了 N 中函数 f(z) 的单叶性,得到下述结果:只要有|z|<1中的单叶函数 g(2)∈N(即 g(z)∈S),使得 Re{f(z)/g(z)}>0,那末f(z)必在|z|≤1/5中是单叶的.本文就 g(z) 属于S的一个子族,把上述结果加以改善.我们约定:  相似文献   

18.
§1.设k次对称函数fk(x)=z sum from v=1 to ∝(a_(vk)_1)~(z~(vk_1))=z sum from v=z to ∝ (a_n~(k)z~(vk 1)在单位圆|z|<1中正则单叶,这类函数的全体称为S_k,设σ_n~(k)=z sum from v=1 to ∝n (a_(vk)_1~(z~(vk 1))。 舍苟证明一切σ_n~(1)(z)在圆|z|<1/4中单叶,且不能易以更大的数,伊列夫证明当  相似文献   

19.
设Ω={f(z):f(z)在|z|<1内解析,f(z)=z sum from n=2 to ∞(an ibn)zn,an,bn为实数,sum from n=2 to ∞n (a2n bn2)~(1/2)≤1},找出了函数族Ω的极值点与支撑点.  相似文献   

20.
在参考文献[1]中的定理2得出,设 f(z)=z sum from n=2 to ∞ a_nz~n (1) 在单位园|z1<|内正则,且满足条件 Re{f~2(z)/z~2f′(z)}≥1/2 (2) 则在|z|<1内f(z)是单叶的。我们将此种正则单叶函数的全体称为族D·当a_2=0时记为D_o。本文的目的,首先建立族D中函数f(z)的一般表达式,其次,用建立的一般表达式找出D_o中函数f(z)的|f(z)|,|f′(z)|的准确上下界,f(z)的星形和凸形界限,并对f(z)的系数及写像面积和长度问题作出一些估计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号