首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 250 毫秒
1.
研究了SiCp-ZA22复合材料的组织、界面关系及材料的常高温力学性能。结果表明,SiC较均匀地分布于基体中,SiC颗粒与基体结合良好且在a-Al界面上形成了少量Al2MgO4过渡层;加入SiC颗粒可明显提高材料的强度和弹性模量且高温下表现出较好的力学稳定性。  相似文献   

2.
利用扫描电镜原位观察方法研究了SiCp/ZA22复合材料的断裂过程,结果表明,微裂纹的形成主要在基体中缺陷及晶界处形成,SiC颗粒与基体良好的结合界面及颗粒周围基体的强化,使主裂纹的扩展绕过颗粒进行,并提出了SiCp/ZA22复合材料的断裂机制。  相似文献   

3.
研究了SiCp粒子尺寸、质量分数及热处理工艺对铸造SiCp/ZL201复合材料的室温和高温力学性能的影响.随SiC粒子质量分数的提高和粒子尺寸的增大,复合材料的室温抗拉强度呈下降趋势.随温度升高,基体合金的抗拉强度急剧下降,而复合材料的抗拉强度则下降较小.当温度大于240℃时复合材料的抗拉强度高于基体合金,这表明SiC粒子的加入提高了基体合金的高温抗拉强度.  相似文献   

4.
SiCp/ZA22复合材料的界面   总被引:1,自引:0,他引:1  
研究了SiCp/ZA22复合材料的界面。根据界面反应的热力学,能谱分析及高分辨透射电镜的研究结果,发现SiC/α-Al界面上形成了少量Al2MgO4过渡层,而SiC/η-Zn间无任何反应发生。  相似文献   

5.
通过对SiCp/ZA22复合材料断裂过程的SEM位观察及应力场的有限元法分析,作者认为,此种复合材料的强化效果是基体合金中的应用变强化与应力强化的综合作用而造成的。  相似文献   

6.
铁基/SiC颗粒复合材料界面的稳定性   总被引:1,自引:0,他引:1  
分析了铸造合金颗粒复合材料中的增强相(SiC颗粒)与基体(铸铁)界面结合的形态及影响因素,界面结合机制和稳定性,提出了改善界面结合状态的方法。在实验室条件下,采用离心铸造工艺制取铁基/SiC颗料复合材料,通过金相分析和电子探针等测试手段,研究了经不同的主温处理后铁基/SiC颗粒复合材料界面变化规律。  相似文献   

7.
增强体颗粒尺寸对SiCp/2124Al复合材料变形行为的影响   总被引:10,自引:0,他引:10  
利用常规静态单向拉伸技术,研究了SiC颗粒尺寸对用粉末冶金工艺制得的SiC颗粒增强2124Al合金(SiCp/2124Al)变形行为和力学性能的影响。在体积比为20%的条件下,SiC颗粒尺寸在0.2~48μm的范围内变化,无论室温还是300℃,材料的变形行为和拉伸力学性能明显取决于SiC颗粒尺寸。研究表明,材料中的空隙密度、SiC颗粒的间距、分布状态以及SiC颗粒的断裂、SiC颗粒/Al界面的脱粘  相似文献   

8.
研究了SiC含量及其分布、温度与变形速度等因素对SiC颗粒增强金属基复合材料(PRMMCs)高温挤压与室温力学性能的影响.结果表明:挤压力随行程呈阶段性变化特征,材料致密度影响镦挤填充阶段变形,温度与挤压速度对挤压力影响较大;挤压变形可使材料的基体连续,增强体SiC颗粒分布均匀,梯度层间界面消失;材料的真实应力-应变曲线符合抛物线规律;SiC含量对这类材料的力学性能有较大影响,SiC分布方式对材料抗拉强度和塑性的影响要比对刚度的影响大.  相似文献   

9.
高能超声在制备颗粒增强金属基复合材料中的作用   总被引:20,自引:0,他引:20  
采用高能超声处理方法制备了致密度高、增强颗粒均匀分散的SiC/ZA22基复合材料.对复合材料制备过程中高能超声的作用机理、有效作用范围进行了分析.结果表明,在试验所用高能超声处理条件下(20kHz,1kW),熔液中能造成瞬时局部高温、高压的声空化效应与具有较高速度和加速度的声流效应的协同作用,是高能超声处理技术在制备颗粒增强金属基复合材料时改善增强颗粒与基体合金润湿性,并使颗粒在合金中弥散分布的原因.而高能超声在熔体中有限的有效作用区域,要求利用该技术制备复合材料时,必须在工艺上保证熔体的各个部位均能受到高能超声的有效作用才能获得优质的复合材料  相似文献   

10.
针对液态搅拌法制备SiCp/ZA27复全材料,研制出高效复合熔剂,用它处理SiC颗粒表面,以发迹颗粒表面物理结构和化学特性,引起反应润湿,造成熔体的成分起伏并优化结晶条件,从而一气完成改善润湿、变质精炼和活性吸附,金相分析表明:宏观蜊的复合材料组织致密、颗粒分布均匀且界面结合良好;微观上颗粒处于晶内,呈现颗粒没机制,就凝固特性,复合材料宏观上仍以糊状方式凝固,但在颗粒微人,凝固方式从颗粒表层至熔体  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号