共查询到18条相似文献,搜索用时 78 毫秒
1.
2.
为了实时准确地监控网络上的不良图像,本文提出了一种新的基于SVM的不良图像检测方法,首先融合不良图像的物理特征构造SVM分类器,将在应用层网关截获的图像信息提交给分类器进行识别,对识别结果为不良的图像进行IP地址屏蔽。实验结果表明本文提出的基于SVM的不良图像检测方法可成功用于网络上不良图像的监控。 相似文献
3.
饶娟 《甘肃联合大学学报(自然科学版)》2006,20(3):29-31
对图像处理时的边缘检测算法作了分析和研究,介绍了基于模糊增强的图像边缘检测算法,详细研究了单层次模糊增强和多层次模糊增强的算法,并结合实验说明,该智能图像处理方法不仅能够明显的增强图像,而且可以检测到良好的图像边缘.最后,展望了这一新的研究应用领域的发展前景. 相似文献
4.
提出了一种基于支持向量机(ISVM)算法的钙化点检测方法.通过对乳腺图像进行预处理并提取可能含有微钙化点的感兴趣区域(ROI),对样本ROI进行小波变换确定优化参数,利用SVM检测微钙化点.试验中研究了SVM参数的选取对分类效果的影响,并利用ROC评估准则对SVM的检测效果进行评估.结果表明,SVM在微钙化点检测中是有效的,解决了目前微钙化点检测中普遍存在的假阳性率高、效率低的问题. 相似文献
5.
为解决自主泊车过程中的停车位识别问题,该文基于全景环视图,提出了融合改进Transformer模块和卷积的混合编码-解码结构网络模型.使用上述模型对全景环视图中停车位上的“T”形和“L”形角点进行检测,并回归得到角点的位置、方向以及类型信息.然后把提取出的角点输入推理模块,根据角点对之间的种类和几何关系完成停车位检测并计算得到停车位位置.最后,使用ps2.0数据集在多个情景下进行了实验,停车位检测的精确率和召回率分别到达了99.27%和99.22%,角点位置误差RMSE在2 cm以下.对每张图片角点检测的计算量约2.71 GFLOP,对应的检测时间约40 ms. 相似文献
6.
在边缘场景下,气象图像采集模型大多部署在算力较低的移动端或边缘设备上,造成观测图像分辨率较低,给天气现象检测带来困难,且传统FSRNet生成的图像存在伪影、模糊等问题,因此需要优化天气图像超分辨率网络,提高图像的分辨率.基于无锚检测器,提出以观测要素为点的检测方案,不需要手动设置锚框,使检测模型轻量且高效.通过引入热图损失、目标注意力损失和对抗性损失等多维损失函数,对粗糙SR网络进行优化,使低分辨率图像完成递进式训练.优化骨干网络ShuffleNetV2,使检测模型更加轻量化,提高超分辨率天气图像检测的性能.实验结果证明,此天气图像超分辨率重建模型可以生成质量更高、细节更加清晰的目标观测图像,更加轻量的检测模型适用于非约束场景,在FDDB上的平均精度值(AverP)达到97.7%,优于其他先进模型. 相似文献
7.
针对遥感图像中的小目标存在信息少、易受背景干扰、特征表达较弱等缺陷,导致目前通用目标检测算法在对这类小目标进行检测时效果不理想的问题,为提高对遥感图像中小目标的检测能力,提出一种基于RFBNet的改进算法.该算法以RFBNet为框架,首先利用自校正卷积取代特征提取网络中的常规卷积,以扩展感受野丰富输出,进而强化对弱特征... 相似文献
8.
提出了一种基于卷积神经网络(convolutional neural networks,CNN)加条件随机场(conditional random fields,CRF)的眼底图像出血点检测方法。首先,为了避免图像背景区域对后续检测的影响,参考眼底图像中的灰度信息并根据眼底中心位置到其边缘的长度,将图像调整到合适的尺寸,再对图像进行线性加权增强其亮度和对比度;然后,用裁剪到的图像块在仿照VGG网络构建的CNN架构上去训练检测出血点的CNN模型;最后,为了克服CNN模型在出血点检测中误检、漏检等问题,采用CRF对CNN模型输出的概率图进行后处理,以实现眼底图像出血点的精确检测。提出的检测方法在公开的Kaggle与Messidor数据库上进行训练和验证,获得了98.8%的准确率、99.4%的召回率和99.1%的F-score。另外,在DIARETDB1数据库上测试的灵敏度达到98.5%,F-score为96.1%。实验结果表明,从图像视觉和定量检测2个方面均说明了提出方法的有效性和优越性。 相似文献
9.
为了提高卷积神经网络设计的自动化程度并进一步提高复杂背景下违禁品检测的准确率和速度,提出了一种基于神经网络架构搜索的X射线图像违禁品检测算法。首先,设计逐层渐进式搜索策略和多分支搜索空间,并基于批量归一化指标为每一个layer结构搜索最佳侧分支;然后,逐层搜索构建新的骨干网络组件;最后,组成由数据驱动的新目标检测模型。该算法在数据集HiXray、OPIXray、PIDray上分别取得了83.4%、87.2%、70.4%的检测精度。实验结果表明,本文算法能够自适应数据集并自动搜索出性能更好的Backbone组件,与FCOS、YOLOv4等主流算法相比,有效提高了复杂背景下违禁品检测的准确率和速度。 相似文献
10.
阐述了一种利用图像内在统计特性进行图像拼接检测的方法。图像拼接检测是一个基于拼接图像特征的模式识别问题。本文通过对游程长度和图像边缘的统计特性进行分析,说明了拼接操作所引起的图像像素不相关性和不连续性。为进行拼接检测,从图像游程长度和图像边缘统计特性中提取特征量,以此特征量去训练神经网络作为最后的分类器。结果表明,由此特征量作为图像拼接检测的标准,检测结果的精确度良好。 相似文献
11.
12.
IntroductionArtificial neural networks can be dividedintotwo classes :rate code neural networks and pulse-based neural networks .Inrate code neural networks the outputs of the neurons arecontinuous , whereas in pulse-based neural networks theneurons emit pulses . Although rate code neural models havebeen well studied, researchers continue to find the evidencerecently that in many cases the brain may accomplishcomputations on pulses(action potential) . Great effort hasbeen devoted towards the a… 相似文献
13.
14.
基于角点检测的图像匹配算法及其在图像拼接中的应用 总被引:5,自引:0,他引:5
研究了图像匹配与图像角点匹配之间的关系.并在此基础上提出一种基于角点检测的图像匹配算法,成功地应用于图像拼接中.该算法将角点作为图像的特征点,并通过角点值、邻域角点数、角点间距及参数一致性等4个指标对角点集进行逐级筛选,有效地剔除了不匹配的角点,保证了匹配精度,同时避免了传统算法中进行模板匹配的繁重计算,大大提高了匹配速度.图像拼接实验验证了本文算法的快速、准确和稳定的特性. 相似文献
15.
该文针对数字化文档图像的倾斜现象,首先定义了多种变换算子,然后在倾斜检测中,利用这些算子对预处理后的二值化倾斜图像进行变换处理.所得到的变换图像淡化了原文档图像的内部细节特征,同时清晰地反映了原图像版面边界的走势.变换图像通过一个图像块的形式直接表征了原版面的边界信息,增强了版式边缘,使得文档图像的倾斜角度更易检测.最后通过选取有代表性的倾斜版面图像,对该算法进行了实验验证分析,得到了版面倾斜检测的统计结果. 相似文献
16.
针对基于深度学习的图像检索提取特征往往包含了复杂的背景噪声,导致图像检索的精确率并不高的问题,提出一种特征图融合与显著性检测的方法.首先,训练用于分类的深度卷积神经网络模型.然后,并将图像卷积之后的特征图谱进行融合,得到图像的显著性区域.最后,通过计算图像显著性特征的余弦距离来进行检索.实验结果证明:相比目前主流的方法,文中方法能够有效提高检测精度,且鲁棒性较高. 相似文献
17.
针对有雾天气会使图像质量降低,影响对图像信息的提取,导致图像的应用价值减少的问题,提出一种基于深度学习的图像去雾算法。首先,对原有雾图像进行单尺度和多尺度的卷积来特征提取,其次再用多尺度卷积核实现图像细节的重建得到粗略的透射率传播图,同时利用原有雾图像中像素点的位置和亮度值得到大气光值,利用导向滤波得到精细透射率传播图和之前得到的大气光值进而反演出无雾图像,最终对无雾图像进行直方图颜色校正。实验结果表明,相比传统去雾算法,该算法对图像细节的处理更加自然并具有很好的视觉效果。 相似文献
18.
在公共安全检查领域中,研究毫米波图像目标检测的快速性和精准性的方法具有非常重要的实际应用价值。提出了基于Faster R-CNN深度学习的方法检测隐藏在人体上的危险物品。该方法将区域建议网络(region proposal network,RPN)和VGG16训练卷积神经网络模型相结合,接着通过在线难例挖掘(online hard example mining,OHEM)技术优化训练所提出的网络模型,从而构建了面向毫米波图像目标检测的深度卷积神经网络。实验结果证明所提的方法能高效地检测毫米波图像中的危险物品,并且目标检测的平均精度高达约94.66%,检测速度约为6帧/s,同时对毫米波安检系统的智能化发展有着极其重要的参考价值。 相似文献