首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
针对细粒度图像分类中数据分布具有小型、非均匀和不易察觉类间差异的特征,提出一种基于注意力机制的细粒度图像分类模型.首先通过引入双路通道注意力与残差网络融合对图像进行初步特征提取,然后应用多头自注意力机制,达到提取深度特征数据之间细粒度关系的目的,再结合交叉熵损失和中心损失设计损失函数度量模型的训练.实验结果表明,该模型在两个标准数据集102 Category Flower和CUB200-2011上的测试准确率分别达94.42%和89.43%,与其他主流分类模型相比分类效果更好.  相似文献   

2.
细粒度图像分类是对某一类别下的图像子类进行精确划分.细粒度图像分类以其特征相似、姿态各异、背景干扰等特点,一直是计算机视觉和模式识别领域的研究热点和难点,具有重要的研究价值.细粒度图像分类的关键在于如何实现对图像判别性区域的精确提取,已有的基于神经网络算法在精细特征提取方面仍有不足.为解决这一问题,本文提出了一种多尺度...  相似文献   

3.
针对现有细粒度图像分类算法普遍存在的模型结构复杂、参数多、分类准确率较低等问题,提出一种注意力特征融合的SqueezeNet细粒度图像分类模型. 通过对现有细粒度图像分类算法和轻量级卷积神经网络的分析,首先使用3个典型的预训练轻量级卷积神经网络,对其微调后在公开的细粒度图像数据集上进行验证,经比较后选择了模型性能最佳的SqueezeNet作为图像的特征提取器;然后将两个具有注意力机制的卷积模块嵌入至SqueezeNet网络的每个Fire模块;接着提取出改进后的SqueezeNet的中间层特征进行双线性融合形成新的注意力特征图,与网络的全局特征再融合后分类;最后通过实验对比和可视化分析,网络嵌入Convolution Block Attention Module(CBAM)模块的分类准确率在鸟类、汽车、飞机数据集上依次提高了8.96%、4.89%和5.85%,嵌入Squeeze-and-Excitation(SE)模块的分类准确率依次提高了9.81%、4.52%和2.30%,且新模型在参数量、运行效率等方面比现有算法更具优势.    相似文献   

4.
针对存在的性格类别数量大的特点,提出了一种性格属性感知的辅助学习方法.首先对细粒度性格类别归纳标注,将其映射到多个粗粒度的性格属性.其次,将细粒度性格推理作为主任务,细粒度性格与粗粒度属性之间的映射作为辅助任务.最后,通过辅助学习机制联合学习两个任务.实验结果表明,提出的方法在细粒度性格推理任务上推理性能显著优于其他基...  相似文献   

5.
细粒度图像分类是对传统图像分类的子类进行更加细致的划分,实现对物体更为精细的识别,它是计算机视觉领域的一个极具挑战的研究方向。通过对现有的细粒度图像分类算法和Xception模型的分析,提出将Xception模型应用于细粒度图像分类任务。用ImageNet分类的预训练模型参数作为卷积层的初始化,然后对图像进行缩放、数据类型转换、数值归一化处理,以及对分类器参数随机初始化,最后对网络进行微调。在公开的细粒度图像库CUB200-2011、Flower102和Stanford Dogs上进行实验验证,得到的平均分类正确率为71.0%、89.9%和91.4%。实验结果表明Xception模型在细粒度图像分类上有很好的泛化能力。由于不需要物体标注框和部位标注点等额外人工标注信息,Xception模型用在细粒度图像分类上具有较好的通用性和鲁棒性。  相似文献   

6.
针对包含细微差异动作的视频数据集,提出了一种用于分辨细粒度差异动作的深度神经网络.该网络结构由一个三维卷积(C3D)网络的轻量化变体和一个基于注意力机制的长短时记忆网络组成,优化了三维卷积网络的深度和注意力机制的权重惩罚项.实验结果表明:该网络可以有效地关注视频中的重要信息,在平均准确率和检测准确率上均有所提升.  相似文献   

7.
细粒度图像分类是计算机视觉中非常热的研究方向.由于同一个大物种的子类别之间具有相似的外观,相似的颜色,所以差别非常细微.因此,细粒度图像分类非常具有挑战性.为了解决这个挑战,该文提出一种基于注意机制的循环卷积神经网络用于细粒度图像分类.首先,根据注意机制循环提取一幅图像中的显著性物体区域;然后,对原始图像和每次提取的显著性区域分别进行分类;最后,融合分类层得分,进行最终分类.在非常有挑战性的公共数据集CUB-200-2011,Stanford Dogs和Stanford Cars上进行实验,与比较先进的实验方法进行比较,实验结果表明该文提出的方法非常有效.  相似文献   

8.
知识蒸馏能提高神经网络的泛化能力,可解决遥感图像场景分类时标注数据不足的问题.遥感图像存在的类间高相似性会导致中间知识特征丢失,针对该问题,本文提出一种基于自蒸馏级联注意力机制的特征提取方法(SDCASA).首先构造权值共享的教师、学生网络;然后使用级联注意力模块精细化深层教师网络所提取到的特征,同时保留被浅层神经网络过滤的中间边缘信息;再利用精细化之后的特征指导学生网络学习;最后在下游训练一个线性分类器完成特征分类.在3个公开数据集AID、MLRSNet、EuroSAT上使用20%和50%的样本训练,分类准确率分别达到85.17%、90.10%、91.13%和85.50%、92.13%、91.17%.此方法能有效提高遥感图像场景分类准确率,性能优于主流自监督图像分类方法SimSiam、SwAV、MoCov2、Deepcluster,具有良好的应用价值.  相似文献   

9.
新冠肺炎在全球范围内的突然爆发,使医疗工作者进入了紧张的工作状态.面临此次突发的危机争件,病毒检测速度较慢,检测手段单一等问题也迅速暁露出来,为此,提出了一种基于注意力机制的轻量级卷积神经网络方法,以进行高效肺部图像分类,从而缓解医疗工作压力.提出模型采用MobileNet为基本网络,并融合注意力机制.实验表明,提出网...  相似文献   

10.
细粒度实体分类是一项多类别多标签任务,能协助广泛的下游任务(关系抽取、共指消解、问答 系统等)提高工作效率、优化准确率,已成为自然语言处理领域的一个研究热点。针对传统的细粒度实体分类方法人工标注大型语料库难度大,准确率偏低等问题,研究人员提出了基于神经网络的细粒度实体分类方 法,不仅能够解决人工标注费时费力的问题,而且可以提高分类的准确率。然而现有的神经网络模型大多需 要远程监督的参与,在此过程中会引入噪声标签等问题,通过噪声标签处理方法能够有效抑制噪声标签对分类结果的影响,进一步提升分类性能。 在相同评测数据集下,根据相同评价指标对比各类细粒度实体分类方 法的性能,可以发现在细粒度实体分类领域中采用 BiLSTM 处理实体指称上下文,并通过注意力机制提取更为重要的特征,有助于提高细粒度实体分类方法的准确率、Macro F1值和 Micro F1值。  相似文献   

11.
为了将标签间的语义相关性引入多标签图像分类模型中,传统的方法例如 ML-GCN 通过设置单阈值将标 签条件概率矩阵二值化为标签共现矩阵,然而,仅设置单阈值很难归纳所有的标签语义关系情况。 针对这一问题, 提出一种融合标签间强相关性的多标签图像分类方法—MGAN(Multiple Graph Convolutional Attention Networks), 通过设置多个阈值,将传统的标签条件概率矩阵按照不同的相关性程度分割为多个子图;同时,为了提升多标签分 类性能,也引入图像区域空间相关性。 另外,针对传统的“CNN+GCN”方法将标签与特征的融合张量视为预测分数 缺乏可解释性问题,将标签与特征的融合张量视为注意力分数;在 MS-COCO 和 PASCAL VOC 数据集上与其他主 流多标签图像分类方法进行了对比实验,平均准确率分别达到了 94. 9%和 83. 7%,相较于经典 ML-GCN 模型,分 别获得了 0. 9%和 0. 8%准确率提升,且在“Binary”和“Re-weighted”邻接矩阵模式下,MGAN 都有较好的表现,验证 了新的融合方法可以缓解图卷积神经网络过平滑问题对多标签图像分类的影响。  相似文献   

12.
目的 低光工况或拍摄技巧影响都可能获得低光照图像,为解决此类图像对比度低、噪声大、颜色失真等问题,提出一种卷积神经网络增强模型 RetKIND,包括分解网络、亮度调整网络和降噪网络。 方法 它借助残差模块(RB)和跳跃连接,有效抑制分解网络在分解时产生的噪声;融合 U-Net 架构、空洞卷积和 EBAM 高效注意力机制构建降噪网络,利用空洞卷积扩大感受野,提取更多图像信息,提高 EBAM 在通道和空间上提取反射图的细节、纹理、颜色等特征的能力,实现图像去噪;由 UC(亮度调整网络中的自定义模块)和普通卷积组成亮度调整网络,旨在减少光照图细节缺失,提高光照分量对比度。 融合去噪后的反射分量和增强后的光照分量,得到正常光照图像。结果 仿真结果表明:在 LOL 数据集上,相较 R2RNet,FPSNR 和 FSSIM 值分别上升了 6. 2%和 4. 2%;相较 URetinexNet,FPSNR 和 FSSIM 值分别上升了 5. 9%和 1. 2%;相较 DEANet,FPSNR 和 FSSIM 值分别上升了 2. 9%和 1. 1%。 结论 Ret-KIND 模型既能提升图像亮度,又能降低图像的噪声,有助于推动低光图像增强模型应用到目标检测领域。  相似文献   

13.
本研究针对现有图像修复方法不能有效地分离结构和纹理信息,修复结果往往会出现边界模糊、结构扭曲等伪影问题,提出了基于潜在特征重构和注意力机制的人脸图像修复方法。人脸图像修复方法分为两阶段,第一阶段,通过结构重建器网络提取样式向量,按照StyleGAN所述的原理分为粗尺度特征、中尺度特征和精细特征三组,插入到预先训练好的StyleGAN生成器中,产生初步的修复结果;第二阶段通过构建纹理生成网络并使用上下文注意力机制,注意力分数由注意力计算模块计算,注意力转移模块根据较高级别特征图和注意力分数来填充较低级别特征图中的对应缺失区域,以细化上一阶段初步的人脸修复结果。在CelebA-HQ数据集上的训练并进行测试,本文的方法在定量和定性分析两个方面均优于现有方法。因此,基于潜在特征重构和注意力机制的人脸图像修复方法能够有效地修复缺损人脸图像,大大减少了边界过度平滑和存在纹理伪影的问题。  相似文献   

14.
医学上显微细胞图象的识别是医疗诊断的重要依据。本文根据细胞图象的特点,给出了一种细胞图象识别系统的总体设计方案,讨论了细胞图象的灰度变换、直方图修整、伪彩色增强、噪声滤除等增显技术,细胞图象的特征抽取及其描述方法,给出了细胞图象的识别和理解系列的模型。  相似文献   

15.
聚焦于图像中物体间位置关系这一特定信息,提出一种融合空间关系机制的神经网络图像摘要生成模型,以期为视觉问答和语音导航等下游任务提供物体方位或轨迹等关键信息.为了增强图像编码器的物体间位置关系学习能力,通过改进Transformer结构来引入几何注意力机制,显式地将物体间位置关系融合进物体外观信息中.为了辅助完成面向特定...  相似文献   

16.
针对图像语义分割中,存在细节信息丢失、分割类别边缘模糊而粗糙的问题,在编码解码结构的基础上,结合残差模块和注意力机制,设计一种残差注意力模块.通过注意力机制加强特征图通道之间的联系,以提升语义分割的细腻度.为提高模型对多尺度物体的识别能力,结合金字塔模型,设计一种金字塔上采样模块.利用编码过程中产生的不同尺度的特征图,...  相似文献   

17.
基于人类视觉注意模型得到局部视觉显著图,然后以注意焦点初始化聚类中心进行模糊C均值聚类,从而实现图像ROI的提取.实验证明基于图像视觉注意力模型的FCM方法应用于计算机辅助诊断中可以提高医学诊断的有效性和快速性.  相似文献   

18.
探讨了暗通道先验去雾算法的原理,针对暗通道先验去雾算法时间复杂度太大的缺点,提出用快速有效的巴特沃兹低通滤波器代替复杂的软抠图方法实现对透射率的平滑与细化;针对暗原色图像在景深交界处存在白边现象采用求区域最大值法加以修正;并给出了自适应的求解全局大气光算法.实验结果表明,改进的暗通道去雾算法在获得满意的图像去雾效果的同时能大大提高图像去雾算法的速度,能满足工程上的实时应用要求.  相似文献   

19.
基于一类随机矩阵的数字图像置乱新方法   总被引:1,自引:0,他引:1  
以图像信息安全问题为背景,改进了用形式固定的矩阵对数字图像进行置乱的方法,提出密钥控制下利用一类随机的上(下)三角可逆矩阵对数字图像进行置乱与恢复的新方法.采用此方法,使图像的置乱效果与置乱次数无关且密钥空间足够大,而且解密是加密的简单逆过程.结果表明:在图像信息隐藏中,这种方法能达到较好的加密与解密效果,易于实现并具有良好的应用价值.  相似文献   

20.
针对新型冠状病毒感染胸部 X-ray 图像分类任务数据集样本过少,现有的两阶段分类器和三阶段分类器模型对高纬度的图像特征提取效果差,模型训练慢等问题,提出一种基于 ConvNeXt 卷积神经网络改进的分类任务算法 ConvNeXt-AT。 ConvNeXt-AT 分类模型首先通过在 ConvNeXt Block 层添加混合域注意力机制 CBAM 来提高图像特征提取能力,不仅考虑了通道间的信息交互能力还考虑到了空间域上像素间的联系,得到 ConvNeXt-AT 模型;然后针对 X-ray 图片常见的泊松噪声使用全变差正则化方法对数据集进行降噪处理;最后在 COVID-19 公开的大型数据集共 21165 张图片进行对比实验。 实验结果表明,在训练数据集充分的情况下,改进的 ConvNeXt-AT 模型相较于常用分类模型 ResNet-50、MobileNet、EfficientNet 以及原 ConvNeXt-T 在准确率上分别提升了 2%、2. 7%、2. 1%、1. 9%。 最后通过 Grad-CAM 显示类激活图的图像可视化方法证明改进方法是可行的,模型具有很好的鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号