共查询到18条相似文献,搜索用时 78 毫秒
1.
采用溶胶-凝胶法合成前驱物Sn(OH)4胶体,在不同温度下加热分解,得到一系列纳米SnO2试样.通过恒流充放电和循环伏安(CV)实验,表征了不同结构和颗粒度的纳米SnO2锂二次电池负极材料的电化学性能.结果表明,纳米SnO2试样的电化学性能对热处理温度很敏感,800℃热分解试样的电化学性能较好. 相似文献
2.
以SnCl4·5H2O,ZnCl2和N2H4·H2O为原料,用水热法制备Zn2SnO4纳米粉体.利用XRD,TEM和循环伏安等测试手段研究Zn2SnO4材料的结构、形貌及电化学性能.结果表明,当原料配比n(Zn)∶n(Sn)∶n(N2H4.H2O)=2∶1∶8时,180℃下水热合成24 h,得到晶型发育良好的纯相Zn2SnO4纳米材料.其首次放电和充电容量分别为1 634和709.7 mA.h/g,循环30次之后放电容量为483.7 mA.h/g,表现出较好的电化学性能. 相似文献
3.
以SnCl2·2H2O、聚乙二醇400(PEG400)和Na3C6H5O7·2H2O为主要原料,采用简单的水热法制备了SnO2负极材料.采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)表征其组成和微观形貌,并采用恒流充放电测试、循环伏安法(CV)对样品进行电化学性能测试.结果表明:添加PEG400可以有效改善SnO2表面形貌,减少其团聚现象并且使其电化学性能明显提高.当添加量为10 mL时,合成的SnO2具有良好的循环及倍率性能,首次放电比容量为2 774 mAh/g,循环50次后放电比容量为600 mAh/g,电化学性能较改性前的SnO2有了明显改善. 相似文献
4.
利用简单的一步水热法制备高性能的镍掺杂SnO2 纳米微球锂离子电池负极材料. 利用扫描电镜(scanning electron microscope, SEM)、高分辨率透射电镜(high resolution transmission electron microscope, HRTEM)、拉曼分析仪、X射线衍射(X-ray diffraction, XRD)仪以及电化学性能测试仪器(如蓝电测试系统、电化学工作站)分别研究了镍掺杂对SnO2 微观形貌、组成、结晶行为及电化学性能的影响, 并得到了最佳反应时间. 实验结果表明:与纯SnO2相比, 镍掺杂SnO2 纳米微球表现出了更好的倍率性能和优异的循环性能. 特别地, 反应时间为12 h 的5 % 镍掺杂SnO2 在100 mA/g 电流密度下的首次放电比容量为1 970.3 mA·h/g,远高于SnO2 的理论容量782 mA·h/g. 这是因为镍掺杂可适应庞大的体积膨胀, 避免了纳米粒子的团聚, 因此其电化学性能得到了显著改善. 相似文献
5.
SnO2纳米线阵列的制备及纳米器件的制作 总被引:4,自引:0,他引:4
采用简单的溶胶-凝胶方法在多孔阳极氧化铝模板(AAM)的微孔中制备了高度有序的SnO2纳米线阵列。XRD,SEM和TEM对样品进行了结构和形貌的表征,结果表明,高度有序的SnO2纳米线具有四方相的多晶结构,纳米线连续均匀;并对SnO2纳米线阵列的生长机理进行了探讨;最后用聚焦离子束沉积设备制作了单根SnO2纳米线器件。 相似文献
6.
《云南民族大学学报(自然科学版)》2016,(5):388-392
分别使用十二烷基苯磺酸钠(SDBS)作为表面活性剂以及十二烷基苯磺酸钠(SDBS)和聚乙烯吡咯烷酮(PVP)作为双表面活性剂,采用水解法制备出SnO_2纳米材料,并研究了SnO_2纳米材料的形貌和作为锂离子电池负极时的电化学性能之间的关系.结果表明,所制备的SnO_2纳米颗粒均为球形,大小为45~75 nm,在双表面活性剂的调控下所制备的SnO_2纳米材料体积较大.所制备的SnO_2纳米颗粒均为具有金红石结构的锡石型,属于四方晶系.恒电流充放电循环测试结果表明,SnO_2纳米颗粒具有较高的放电比容量,首次放电比容量大约为1400~1600 m Ah/g,但是循环稳定性较差,循环5次以后样品的放电比容量衰减至400~700 m Ah/g.总之,双表面活性剂调控下,7h煅烧制备得到的SnO_2纳米材料相对较好,具有相对较大的比容量和相对较小的阻抗. 相似文献
7.
利用溶胶-凝胶法制备纳米SnO2粉体中发生的团聚和微晶生长现象与加热时间和加热温度有直接的关系。利用透射电子显微镜对四种不同制备条件下生成的纳米SnO2粉体观察可以发现凝胶前驱物水解后形成的SnO2微晶尺度在5纳米以下。这些微晶随加热时间长短发生不同程度的团聚,当加热温度高于400℃时团聚的微晶开始重新结晶生长,在600℃全部生长为块状单晶,并可以观察到生长形成的枝晶。本工作结对为溶胶-凝胶法制备纳米SnO2的工艺改进提供了理论依据。 相似文献
8.
CuO掺杂纳米SnO2锂离子电池负极材料的合成与电化学性能 总被引:1,自引:0,他引:1
以SnCl4·5H2O、Cu(NO3)2·3H2O和NH3·H2O为原料,采用化学共沉淀法制备了CuO掺杂的纳米SnO2粉末.运用X射线衍射、扫描电镜等手段对合成粉末进行了表征.将合成粉末作为锂离子电池负极材料,研究了其充放电容量、循环性能和交流阻抗等电化学性能.结果表明:采用化学共沉淀法可以得到平均粒度为87 nm的CuO掺杂的纳米SnO2粉末;在SnO2中掺入CuO,并没有改变SnO2的结构,但能够有效抑制SnO2粒子的长大;CuO掺杂的纳米SnO2粉末的可逆容量可以达到752 mA·g-1,经60次循环后,CuO掺杂的纳米SnO2粉末的容量保持率分别为93.6%,优于纳米SnO2 (92.0%),掺杂CuO改善了纳米SnO2的循环性能. 相似文献
9.
采用溶胶.凝胶法的无机工艺路线,在普通陶瓷管上制备Sb、F共掺的SnO2薄膜,研究了薄膜表面电阻与掺杂量、浸涂次数以及薄膜的发热温度的关系,其表面电阻最低为8Ω/□,薄膜的发热温度可达600℃以上,将其作为ClO2反应管的面源加热介质,通过改变电热膜面积,形成温度梯度和浓度梯度的双梯度反应方式,大大提高了反应物的转化率. 相似文献
10.
高析氧过电位Ti/SnO2+Sb2O4阳极的制备及性能 总被引:4,自引:0,他引:4
采用溶胶-凝胶涂层技术,以无机物SnCl2.2H2O,SbCl3为前驱物制备了Ti/SnO2 Sb2O4电极。电极的晶体结构通过XRD进行了表征,得知涂层中的SnO2是金红石结构,并计算出涂层氧化物属于纳米级,平均粒度为6.5 nm。考察了锑的掺入量和烧结温度对电极性能的影响,结果表明:锑原子质量分数为4%,烧结温度600℃为较佳工艺条件;电流密度10mA/cm2时,电极的析氧电位高达2.1182V(vs.NHE),说明Ti/SnO2 Sb2O4电极是一种优良的阳极电催化剂。 相似文献
11.
采用离子交换除氯水解法和有机溶剂共沸干燥方法制备得到导电性好的掺锑二氧化锡纳米粉末,用XRD对掺锑二氧化锡纳米粉末的结构进行表征;采用粉末微电极技术,对掺锑二氧化锡纳米粉末的电化学性质进行了研究. 相似文献
12.
以聚酰亚胺薄膜为基材,氯化亚锡为前驱体,通过表面改性离子交换法合成了SnO2/PI复合膜,探讨了最佳制备条件,采用SEM、ATR-FTIR等手段对其形貌、结构进行表征,并以亚甲基蓝为目标降解物,对复合薄膜的光催化性能进行评价,6h后亚甲基蓝降解率达到98.6%. 相似文献
13.
In3+掺杂SnO2纳米粉体的制备及气敏性能研究 总被引:1,自引:0,他引:1
以自制的SnO2和In2O3为原料,通过固相研磨法制得了一系列掺有In3+的SnO2纳米粉体,利用X射线衍射仪、透射电镜等测试手段对材料的结构、形貌进行了测量和表征.将该材料制成气敏元件,采用静态配气法测试了材料的对Cl2,NO2,H2,H2S,乙醇,甲醛等气体的气敏性能.探讨了掺杂量、工作电压对SnO2粉体材料气敏性能的影响.研究发现:其中当掺杂In2O3的质量分数为3%时,元件在加热电压为3.5 V下对体积分数为30×10-6的Cl2的灵敏度达到3036,而对其他气体几乎没有响应或者响应很小,元件具有较好的响应-恢复特性,响应时间和恢复时间分别是3 s和8 s,最后简要讨论了SnO2对的Cl2气敏机理. 相似文献
14.
对SnO2陶瓷导电薄膜的特性、导电机理、制备、应用进行了叙述,并且利用喷涂热解工艺制备了SnO2陶瓷导电薄膜,探讨了掺杂剂Sb的掺杂量、喷涂溶液的浓度对SnO2导电薄膜电阻值的影响 相似文献
15.
溶胶-凝胶法制备纳米SnO2 总被引:2,自引:2,他引:2
运用溶胶-凝胶法合成前驱物Sn(OH)4胶体,在不同温度下加热分解得到一系列纳米SnO2试样,并用X-射线衍射(XRD)图谱和透射电子显微镜(TEM)表征不同温度下热处理得到试样的结构和形貌,研究了分解温度与产物粒径大小之间的关系以及微晶生长动力学。 相似文献
16.
二氧化锡(SnO2)的一种晶体结构--正交相是高温高压相, 不易合成, 因此, 其性质探测和技术应用研究一直停滞不前. 利用脉冲激光沉积(pulsed laser deposition, PLD)技术, 在相对较低压力和较低温度下制备较纯的正交相SnO2薄膜. 实验结果表明, 这种正交相SnO2薄膜的透明度优于常规四方相SnO2, 其半导体带隙大于四方相SnO2. 相似文献
17.
利用以SnCl4为原料的化学共沉淀法、溶胶-凝胶法和以金属Sn粒为原料的溶解-热解法分别制备出纳米SnO2粉体,研究了不同方法制备材料对CO的气敏性能。采用XRD、TEM等手段对其进行表征,静态配气法测试SnO2的酒敏性能。结果表明,采用溶解一热解法制备的SnO2粒径小于10nm,在180℃的工作温度下对0.1%的CO具有4.5倍的高灵敏度。 相似文献
18.
采用水热法,以ZnSO4.7H2O,SnCl4.5H2O,NaOH为原料,以表面活性剂十六烷基三甲基溴化铵(CTAB)为辅助剂,合成具有八面体特定形貌的Zn2SnO4化合物.通过X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电镜(SEM)和透射电镜(TEM)对产品进行表征.结果表明:所得样品为具有纯相反尖晶石结构的实心八面体Zn2SnO4,单个八面体棱长为500~600nm,化合物中Zn和Sn分别是以+2价和+4价氧化态形式存在.CTAB量对八面体Zn2SnO4形貌起重要作用,其最佳浓度为100 c0(c0为CTAB在水中的临界胶束浓度———0.9×10-3mol/L).八面体Zn2SnO4在电压为0.05~3 V,电流密度为0.2 mA/cm2,首次放电容量达1553.4(mA.h)/g,优于Zn2SnO4纳米颗粒,说明八面体Zn2SnO4在锂离子电池负极材料应用方面具有广阔的前景. 相似文献