共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究不动点集为Dold流形的对合的等变协边分类,针对一个特定的Dold流形F=P(2,15),确定了以F为不动点集的所有带对合的流形(M,T)的等变协边分类。首先,给出了P(2,15)上切丛和法丛的Stiefel-Whitney示性类。其次,根据Kosniowski-Stong定理,构造合适的对称多项式函数,出现矛盾,证明假设错误,对合不存在;或者证明对任意对称多项式函数都满足Kosniowski-Stong定理,说明对合的存在性。最后,得到以P(2,15)为不动点集的对合(M,T)协边。结果表明,存在以F=P(2,15)不动点集的对合,且能够确定对合的等变协边分类。研究结果推广了不动点集为F=P(2,n)(n=1,3,5)的对合的研究结论,丰富了不动点集为Dold流形的对合的等变协边分类问题,也为研究不动点集其他特殊流形的对合提供了借鉴和参考。 相似文献
2.
刘秀贵 《四川大学学报(自然科学版)》2003,40(5):795-797
证明了具有光滑对合T的(4n+2m+2+k) 维闭流形M,如果对合的不动点集为F=P(2m,2n+1),其中2m≥8,2n≥2m,k>0,则(M,T)协边于零. 相似文献
3.
4.
陈德华 《四川大学学报(自然科学版)》2002,39(6):977-981
设(M,T)是一个在闭流形上的对合,它的不动点集为F=RP(8)∪P(8,2^n-1),作者给出了它的所有带对合的协边类。 相似文献
5.
刘秀贵 《吉林大学学报(理学版)》2002,40(2)
证明具有光滑非平凡对合 T的 r维闭流形 M,如果对合的不动点集为 F =∪mi=1H Pi( 2 n) ,其中 n≥ 1 ,则有 :( 1 )当 r=1 6n时 ,( M,T)协边于 ( F×F,twist) ;( 2 )当 r>8n,且 r≠ 1 6n时 ,( M,T)协边于零 相似文献
6.
设(M,T)是1个在r维闭光滑流形M上的不平凡光滑对合,它的不动点集为F,给出了F= m ∪i=1 HPi(n)(4n<r)时对合的协边类,其中HP(n)表示n维四元数射影空间. 相似文献
7.
8.
9.
研究以Dold流形P(1,2n)为固定点集的对合(M2n+1+1+k,T)的协边存在情况,其中k>0,得到一些相应结果. 相似文献
10.
11.
设(M,T)是一个在闭流形上的对合,它的不动点集为F=RP(2)∪P(2,2^n—1),给出了它的所有带对合的流形。 相似文献
12.
设(M,T)是一个带有光滑对合T的光滑闭流形,T在M上的不动点集为F={x|T(x)=x,x∈M},则F为M的闭子流形的不交并.证明了:当F=P(6,2n+1)(n为奇数)时,(M,T)协边于0. 相似文献
13.
赵素倩 《河北科技大学学报》2007,28(3):178-179,185
设(M^r,T)是一个具有对合了T的r(r〉2m+4)维光滑闭流形,它的不动点集为F。本文给出了F=RP1(2m)URP2(2m)URP(3)时对合的协边类(其中m为奇数),RP表示实射影空间。 相似文献
14.
设 (Mr,T)是 1个在 r维闭光滑流形 Mr 上的不平凡光滑对合 ,它的不动点集为 F,给出了F =∪mi=1 H Pi(n) (4 n 相似文献
15.
本文讨论了当Euler示性数χ(P(m,n))=0时,对合不动点集为RP(2)∪P(m,n)的光滑对合(Mm+2n+k,T)的协边分类问题,并给出了存在情形下的协边类{Mm+2n+k,T}。 相似文献
16.
赵素倩 《河北科技大学学报》2007,28(3):178-179
设(Mr,T)是一个具有对合T的r(r>2m+4)维光滑闭流形,它的不动点集为F。本文给出了F=RP1(2m)∪RP2(2m)∪RP(3)时对合的协边类(其中m为奇数),RP表示实射影空间。 相似文献
17.
王荣欣 《河北师范大学学报(自然科学版)》2003,27(2):134-137
设(M^n,T)是n维光滑闭流形Mn上以{p}∪F^4m 2为不动点集的对合,其中F^4m 2-CP(2m 1),确定了流形M^n的维数并给出(M^n,T)的等价协边类,即[M^n,t]2=[CP(2m 2),τo]2,且n-4m 4. 相似文献
18.
本文旨在证明具有非平凡的光滑对合 T的 p维闭流形 Np ,如果对合的不动点集为 F =RP1 ( 2 m +1 )∪RP2 ( 2 m +1 )∪ RP( 2 ) ,其中 2 m2 =1 ,那么该对合必为下面的情况之一 :( 1 )等价于以 RP( 2 )为不动点集的对合 ( Mr,T) .当 r>2 ,且 r≠ 4 ,那么 ( Mr,T)协边于零 ,当 r=4时 ,( Mr,T)协边于 ( RP( 2 )× RP( 2 ) ,twist) ;( 2 )等价于以 RP( 2 m +1 )∪ RP( 2 )为不动点集的对合 ( Mr,T) .当 r>2 m +2时 ,( Mr,T)协边于 ( RP( 2 m +4 ) ,τ2 ) ,其中τ2 [x0 ,x1 ,… ,x2 n+ 4 ]=[-x0 ,-x1 ,-x2 ,x3,… ,x2 n+ 4 ] 相似文献
19.
设(Mr,T)是一个具有对合T的r(r>2m,m≠0)维光滑闭流形,它的不动点集为F。给出了F=RP1(2m)∪RP2(2m)∪RP(1)时对合的所有协边类,其中RP表示实射影空间。 相似文献
20.
本文讨论了当Euler示性数X(P(m,n)=0时,对合动点集为RP(2)∪P(m,n)的光滑对合的协边分类问题,并给出了存在情形下的协边类。 相似文献