首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 78 毫秒
1.
针对改进最小追踪噪声互功率谱估计方法存在的噪声过估计的问题。提出一种基于递归最小追踪的噪声互功率谱估计算法。该方法中的平滑因子使用了递归平均技术,在估计噪声互功率谱时,会根据每个频点的实际信噪比作相应的调整。仿真结果表明,该噪声估计算法应用于一个语音增强系统时,取得了较小的噪声均方估计误差及较好的感知语音质量评价(PESQ)得分。  相似文献   

2.
研究了单话筒采集条件下基于语音短时对数谱的最小均方误差(MMSE—LSA)估计的语音增强算法,给出了其算法分析的基本流程图。由于语音是时变的,因此,假设语音频谱分布为高斯分布,在此基础上讨论了MMSE—LSA算法的先验信噪比ξh的2种估计方法——最大似然估计方法和直接判决估计方法。试验证明此方法的语音增强效果较好,尤其在较低信噪比时效果更明显。  相似文献   

3.
研究了单话筒采集条件下基于语音短时对数谱的最小均方误差(MMSE-LSA)估计的语音增强算法,给出了其算法分析的基本流程图.由于语音是时变的,因此,假设语音频谱分布为高斯分布,在此基础上讨论了MMSE-LSA算法的先验信噪比ξk的2种估计方法--最大似然估计方法和直接判决估计方法.试验证明此方法的语音增强效果较好,尤其在较低信噪比时效果更明显.  相似文献   

4.
自适应滤波器消除语音信号中混合噪声   总被引:1,自引:0,他引:1  
语音信号在实际采集和传输的过程中,往往掺杂着多种噪声干扰,比较常见的是正弦窄带干扰和高斯白噪声,而一个简单的自适应滤波器往往很难同时滤除多种噪声。为了抑制混合噪声而得到真实的语音信号,在最小均方误差(LMS)自适应算法和自适应噪声抵消原理的基础上,提出了一种两级自适应滤波器方案,第Ⅰ级在传统噪声抵消系统中加入延迟单元消除正弦窄带干扰,第Ⅱ级用LMS自适应噪声抵消器消除高斯白噪声,同时,利用Simulink模块库对所设计的两级自适应滤波器进行了建模仿真。仿真结果表明:该方案滤波器可以有效地滤除包含正弦窄带干扰和高斯白噪声的混合噪声,达到提高语音质量的目的。  相似文献   

5.
针对不同的语音增强算法对不同噪声的增强效果不同,提出了一种基于深度神经网络的噪声分类的语音增强算法。首先,使用深度神经网络(DNN)算法对噪声进行分类。分类算法包括训练阶段和分类阶段。在训练阶段,采用babble,car,street,train四中噪声对DNN进行训练;在分类阶段,将提取的噪声输入训练好的DNN中,得到分类结果,并对分类性能进行评估。其次,采用PESQ,LSD及SNR等语音评估方法,对不同的含噪语音在不同信噪比、不同语音增强算法下进行评估。语音增强算法包括子空间法、维纳滤波算法、谱减法及对数最小均方误差法(log MMSE),噪声包括babble,car,street,train,信噪比为-5db,0db和5db,并对通过评估得到的值采用平均值法得到噪声和语音增强算法的最佳匹配;最后,针对不同分类噪声,采用不同的增强算法进行语音增强,并对4种噪声之外的噪声根据本文算法选取相应的语音增强算法。  相似文献   

6.
利用互功率谱的方法对安装在混凝土地板上的小型排气扇工作时产生的转动结构声功率流进行了测量 ,对不同的地板和不同劲度系数的隔振支架对结构声功率流的影响以及各自由度的结构声辐射进行了比较和讨论  相似文献   

7.
提出一种有效的先验信噪比平滑方法.该方法从先验信噪比的定义出发,使用小波阈值多窗口功率谱估计方法减小语音功率谱和噪声谱的方差,从而实现先验信噪比的平滑.实验证明,该先验信噪比平滑方法解决了直接判决法在语音开始端能量较大情况下的先验信噪比延时问题,并且提高了先验信噪比的准确性;同时结合该平滑方法的语音增强方法能有效抑制“音乐噪声”,尤其在低输入信噪比时效果明显.  相似文献   

8.
一种基于自适应模糊滤波的语音增强方法   总被引:1,自引:0,他引:1       下载免费PDF全文
在语音识别和语者识别中,通常需要先将输入的语音信号进行去噪处理,这样可使识别的正确率大大提高,通常采用基于LMS算法和RLS算法的自适应线性滤波器来进行去噪。提出了一种基于自适应模糊滤波器的语音增强方法,该模糊滤波器是一种非线性滤波器,它在语音信号的特征域空间采用参数映射的方式来滤除噪声,并能够进行自适应结构调整和参数更新。实验结果表明,采用自适应模糊滤波器来滤除噪声比线性滤波器具有更好的效果。  相似文献   

9.
针对说话人识别的噪声鲁棒性问题,在对数谱最小均方差误差估计算法基础上,采用改进的最小值控制递归平均算法对语音帧信噪比进行估计,通过对前一帧的短时功率谱进行2次平滑和前向多帧最小值搜索,结合语音存在概率估计出当前帧的信噪比,并根据信噪比自适应调整增益因子的大小,对噪声进行消除。构建了一种改进的LSA语音增强方法,使用该方法可以使增强后的语音保持较高的自然度。实验结果表明,与MMSE-LSA算法比较,改进的LSA算法具有更好的语音增强效果,在5dB各类噪声环境下,其平均信噪比较MMSE-LSA算法提高1.36dB,主观语音质量评估平均提高8%。将该方法用于说话人识别系统,其检测代价较采用MMSE-LSA算法的系统平均降低3%。  相似文献   

10.
针对水下环境通常是一种时变的强噪声信道,而采用传统的滤波器难以检测到有用信号的特点,利用LMS自适应谱线增强算法,构造了自适应滤波器。通过理论分析与仿真实验对该增强器进行了研究。结果表明:该谱线增强器收敛后均方误差小,提高了增强谱线和抑制非高斯噪声的能力。  相似文献   

11.
基于高斯混合密度函数估计的语音分离   总被引:3,自引:0,他引:3  
基于最大熵法(Maximum Entropy,ME)、最小互信息量法(Minimum Mutual Information,MMI)和最大似然法(MaximumLIkelihood,ML)最解决盲信号分离问题的常用算法,分析了ME、MMI以及ML算法之间关系。基于高斯混合模式(Gaussian Mixture Model,GMM)概率密度函数估计,提出了一种采用反馈结构的扩展最大熵语音分离算法,与  相似文献   

12.
在复杂的声学环境中,由于环境噪声的干扰,导致声学特征的稳定性不够理想.为克服此难题,通常对决策结果在时间维度上进行平滑.然而,这些平滑过程本身没有考虑数据在时间维度上的结构特征,属于启发式的方法.该文采用动态分割的方法,将语音的频谱包络在时间维度上分割成具有特征同一性的时间块,以分割块为单位计算能量特征,并进行语音/非语音决策,从而达到提高语音端点检测的稳定性目的.实验表明,提出的方法有效提高了语音端点检测的鲁棒性.   相似文献   

13.
基于FSS与PLP的噪声鲁棒语音识别   总被引:1,自引:0,他引:1  
提出了一种基于分数阶谱相减(FSS)与感知线性预测(PLP)相结合的噪声鲁棒语音识别方法,记为FSS PLPC.该方法首先通过FSS在分数阶Fourier域对带噪语音进行降噪处理,然后计算增强语音的均方误差和Itakura距离并进行比较,以获得FSS的近似最优分数阶阶数.最后对根据此阶数得到的增强语音提取感知线性预测倒谱(PLPC).实验结果表明,FSS PLPC对于数字语音的识别性能优于传统的谱减法(SS PLPC)和感知线性预测倒谱(PLPC)法,并且随着信噪比的降低FSS PLPC表现出较好的噪声鲁棒性.  相似文献   

14.
基于扩展谱相减与SAP的带噪语音端点检测   总被引:2,自引:0,他引:2  
为提高低信噪比时带噪语音端点检测的性能,提出了一种将扩展的谱相减法与SAP(Speech AbsenceProbab ility)软门限相结合的方法。采用基于噪声补偿结构的扩展谱相减法,通过使用自适应的判决规则,在不需要进行语音激活检测的情况下有效地去除了背景噪声,克服了单麦克输入时无法在语音段对噪声进行估计的缺点。同时采用非语音段概率SAP软门限,直接对增强后的语音信号进行检测,有效提高了语音段起止端点检测的精确度和可靠性。实验结果表明,该方法比短时能量方法的计算效率高,在信噪比为-10 dB时仍能完成端点检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号