共查询到17条相似文献,搜索用时 102 毫秒
1.
基于深度神经网络的入侵检测方法 总被引:1,自引:0,他引:1
为改善传统机器学习技术解决海量网络数据和复杂入侵模式对信息网络的入侵检测的不足,提出一种基于深度神经网络的入侵检测方法.采用神经元映射卷积神经网络(NPCNN)为网络结构,使用较少的连接和参数,具有易于训练和泛化能力强等优点.在训练过程中,使用Re LU激活器作为非线性激活函数,采用Adam算法进行模型学习,从而避免了传统深度网络须进行预训练的过程.在NSL-KDD数据集上的实验结果表明:提出的方法较基于传统机器学习的入侵检测方法具有良好的特征表征学习和分类能力,且随着数据量的增大,模型的分类精度有较大的提升. 相似文献
2.
作为深度学习的一种有效算法,深度卷积网络已成功应用在处理图像、视频和音频等领域.通过建立一卷积神经网络模型并应用于网络入侵检测,选取的卷积核与数据进行卷积操作提取特征的局部相关性从而提高特征提取的准确度.采集到的网络数据通过多层"卷积层-下采样层"的处理对网络中正常行为和异常行为的特征进行深度刻画,最后通过多层感知机进行正确分类.KDD 99数据集上的实验表明,文中提出的卷积神经网络模型与经典BP神经网络、SVM算法等相比,有效提高了入侵检测识别的分类准确性. 相似文献
3.
针对传统的网络安全防范技术存在的缺陷和入侵检测在动态安全模型中的重要地位和作用,提出了基于模糊理论、神经网络和遗传算法结合的新方法--动态模糊神经网络,并且给出基于动态模糊神经网络的入侵检测系统构建体系.该系统在实际应用中收到了较好的效果. 相似文献
4.
网络入侵检测一直以来都是网络安全中亟待解决的关键任务之一,传统网络入侵检测方法主要通过提取多维特征,采用机器学习方法构建检测模型,大多忽略了入侵行为的时间相关性.通过提取网络入侵行为的时序特征,设计基于降维特征的多头自注意力机制Transformer网络模型,以解决传统串行化时序神经网络模型不易收敛且时间开销较大的问题,通过选取最优的损失函数和训练参数进行并行化训练,实现网络入侵行为检测.实验结果表明,基于Transformer网络模型的网络入侵检测方法在多个数据集上均获得了99%以上的精度和检出率. 相似文献
5.
神经网络应用在入侵检测领域中,可以处理不完整输入信息,同时能够识别新的入侵行为,并行计算和存储特性能够在更短时间内发现入侵行为.为了进一步提高单个神经网络在入侵检测系统中的检测性能,提出了基于模糊积分的多神经网络融合模型MNNF模型.采用KDD99作为实验数据,实验结果表明,MNNF模型具有较好的入侵检测性能. 相似文献
6.
基于进化神经网络的入侵检测方法 总被引:13,自引:3,他引:13
将神经网络与遗传算法结合,提出入侵检测的进化神经网络方法,它是个高效并行非线性动态处理系统,可以满足实时处理要求·首先用遗传算法优化神经网络结构,然后用优化的神经网络进行入侵检测预测、预警·用进化神经网络方法不断演化,寻找最优的网络结构·当进化神经网络学会系统正常工作模式后,能够对偏离系统正常工作的事件做出反应,进而可以发现一些新的攻击模式·实验表明预警率是很高的 相似文献
7.
日益严峻的网络安全形势和网络协议本身的缺陷,使传统的防火墙防御的方式无法胜任。为提高对网络入侵防御能力,提出了模糊神经网络集成的入侵检测模型:首先抓取网络中的数据流,使用模糊数学的方法对数据记录入侵特征预处理。然后用集成的模糊神经网络模块接收预处理模块导入的训练数据和测试数据,通过反复训练学习,把各子树中节点的权值收敛到确定值。训练完成后,模型用于检测网络中的数据。响应模块接收模糊神经网络模块处理结果做出相应的响应。实验使用KDDCUP99网络入侵检测数据集对模型进行评测,并与单一神经网络模型相比较。结果表明模糊神经网络集成的方法检测结果比较稳定,在整体上比单一神经网络的误报率、漏报率和错报率有所降低,准确率和数据集泛化能力明显提高。 相似文献
8.
基于神经网络的入侵检测模型 总被引:10,自引:0,他引:10
对当前网络上的入侵和入侵检测技术进行了分析,论述了神经网络应用于入侵检测系统中的优势,给出了一个基于神经网络的入侵检测的实施模型。 相似文献
9.
入侵检测作为一种动态的安全防护技术,提供了对内部攻击、外部攻击和误操作的实时保护。作者提出了一个基于遗传神经网络的入侵检测方法,采用遗传算法和BP神经网络相结合的方法遗传神经网络应用于入侵检测系统中,解决了传统的BP算法的收敛速度慢、易陷入局部最小点的问题。研究表明,该方法效果良好,学习速度快,分类准确率高。 相似文献
10.
介绍了入侵检测技术的发展与现状,对目前所采用的入侵检测技术及其特点进行了分析,重点讨论了神经网络入侵检测算法,提出了较优的交速度回归神经网络检测算法. 相似文献
11.
12.
YANG Degang CHEN Guo WANG Hui LIAO Xiaofeng 《武汉大学学报:自然科学英文版》2007,12(1):147-150
A new intrusion detection method based on learning vector quantization (LVQ) with low overhead and high efficiency is presented. The computer vision system employs LVQ neural networks as classifier to recognize intrusion. The recognition process includes three stages: (1) feature selection and data normalization processing;(2) learning the training data selected from the feature data set; (3) identifying the intrusion and generating the result report of machine condition classification. Experimental results show that the proposed method is promising in terms of detection accuracy, computational expense and implementation for intrusion detection. 相似文献
13.
【目的】植被检测是城市生态研究的重要手段,然而由于遥感图像中植被存在阴影区域、遮挡区域以及色彩上的畸变等,导致当前的植被检测精度较低。基于遥感卫星影像,采用深度学习技术快速有效地检测出城市中的植被区域,为植被资源统计等相关研究提供依据。【方法】选用深度卷积神经网络模型,对高分辨率遥感影像中的植被区域进行检测。对不同的优化器,通过设置不同的卷积核大小,对精度进行对比分析。最后对网络层数进行研究,对设置合适网络层数进行分析,用构造的深度卷积神经网络在实验数据上进行植被区域检测。【结果】利用卷积神经网络处理二维图像时,无需手动提取特征,进行简单少量的预处理后,直接把图像输入到CNN模型中进行训练,即可实现图片的识别分类功能。降低了预处理的难度,同时局部感知和权值共享大幅度地减少了参数量,加快了计算速度。次抽样还能保证图像处理后的平移、旋转、缩放和拉伸的不变性。解决了传统方法计算量和样本量大、结构复杂以及费时的缺点。在采集到的高分辨率紫金山区域的遥感图像中,通过设计的多层卷积神经网络模型对区域中的植被资源进行分析,对比和研究不同的优化器、卷积核和网络层数,植被检测精度达到95.4%,明显高于当前众多植被检测算法。【结论】在深度学习中,目标检测的精度依赖于网络的结构设置,通过对优化器、卷积核以及网络层数进行设定,可以明显提高目标检测效率和精度。 相似文献
14.
文章介绍了神经网络技术在入侵检测上的应用现状,讨论了BP神经网络算法中存在的一些问题及改进措施,开发了一个基于神经网络的入侵检测系统的原型. 相似文献
15.
针对已提出的很多烟雾检测方法中都是基于手工制作的特征或者使用原始图片直接作为神经网络的输入,减少了深度学习的鲁棒性。为解决这些问题,提出一种基于卷积神经网络(convolutional neural network,CNN)的烟雾检测方法。使用图片归一化方式消除光照的影响,利用烟雾颜色检测烟雾候选区域,CNN自动提取烟雾候选区域的特征,进行烟雾识别,根据分类结果得到报警信号。针对烟雾产生初期烟雾区域相对较小的问题,利用扩大候选区域的策略提高烟雾检测的及时性。由于训练数据少或不平衡引起的过度拟合,使用数据增强技术从原始数据集生成更多训练样本解决该问题。实验结果表明,该方法能有效地检测烟雾,且具有更高的准确率和更好的鲁棒性。 相似文献
16.
大规模互联网络的入侵检测 总被引:5,自引:0,他引:5
介绍了大规模互联网络入侵检测技术的发展现状,对网络入侵检测的体系结构,异常检测技术,响应技术,入侵检测的协同技术,网络基础设施的保护技术等热点问题进行了讨论,指出了该领域的一些发展重点。 相似文献
17.
为保证恶意代码变种检测模型的时效性,传统基于机器(深度)学习的检测方法通过集成历史数据和新增数据进行重训练更新模型存在训练效率低的问题。笔者提出一种基于神经网络平滑聚合机制的恶意代码增量学习方法,通过设计神经网络模型平滑聚合函数使模型平滑演进,通过添加训练规模因子,避免增量模型因训练规模较小而影响聚合模型的准确性。实验结果表明,对比重训练方法,增量学习方法在提升训练效率的同时,几乎不降低模型的准确性。 相似文献