首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
通过分析机床整个温升直到热平衡的误差数据,总结误差分布的数学规律,将热误差和几何误差分离,运用基于压紧样条条件下的3次样条插值算法,以线性拟合后的余差为建模数据,建立了数控机床几何与热复合定位误差数学模型.实验结果表明,该数学模型能很好地拟合数控机床定位误差曲线,补偿后数控机床定位精度提高了80%以上.该方法可运用于不同时刻或不同机床温度下的机床定位误差补偿,建模原理明了、过程快速,模型适用性好.  相似文献   

2.
精密车削中心热误差鲁棒建模与实时补偿   总被引:2,自引:0,他引:2  
为了减小数控机床的热误差.提高数控机床的加工精度,使用BP神经网络和遗传算法相结合的方法建立了热误差模型,并基于所建模型开发了数控机床热误差实时补偿系统.基于对数控机床热动态过程的分析,利用4个关键温度点,建立BP神经网络热误差模型.用遗传算法优化BP神经网络连接权值和阈值,提高了模型的预测精度和收敛时间.试验结果表明:对精密车削中心进行实时补偿后,加工误差从32 μm降低到大约8 μm,明显提高了数控机床的加工精度.  相似文献   

3.
为了研究机床温度变化对数控机床空间定位精度的影响,提出了一种通过分步测量机床工作空间4条体对角线快速获得机床空间误差的方法.基于这种方法在不同的温度条件下,测量了6组数控机床空间定位误差并以z轴定位误差为例进行了分析并在某一机床温度条件下,对空间定位误差进行了预测和补偿,z轴定位误差最大误差从15 μm降低到5 μm以内,精度得到了改善。结果证明分步对角线测量方法是一种研究机床空间定位误差热变化的有效手段.  相似文献   

4.
为了研究数控机床温度变化对机床空间定位精度的影响,提出了一种通过分步测量机床工作空间4条体对角线以快速获得机床空间定位误差的方法.基于这种方法,在不同的温度条件下测量了6组数控机床的空间定位误差,并以z轴定位误差为例进行了分析.在某一机床温度条件下,对空间定位误差进行了预测和补偿,z轴定位误差最大从15μm降低到5μm以内,精度得到了改善.结果证明,分步体对角线测量是一种研究机床空间定位误差与机床温度变化之间对应关系并加以补偿的有效手段.  相似文献   

5.
摘要:
通过建立几何模型,分析了数控机床进给系统运动过程中由装配引起的误差特征,提出了表示其误差特征的综合表达式,将装配误差分为周期性分量和累积性分量.通过仿真分析,研究了装配误差在数控机床内置传感器中的信号特征,以及对进给系统运动精度的影响规律.结果表明:装配误差的周期性分量不影响进给系统的定位精度,但会导致进给系统在运动过程中产生周期性波动,且在频率调制的条件下其周期性波动幅值将增加;装配误差的累积性分量影响进给系统的定位精度,当与运动方向发生交叉时将产生累积方向的变化.同时,对某数控机床内置传感器的信号特征进行分析,并基于分析结果进行装配调整,从而降低了由装配引起的运动误差,提高了被测数控机床进给系统的精度.
  相似文献   

6.
提出了一种基于时间序列算法的机床热误差建模方法.通过时序算法综合分析软件,对实测的热误差数据进行预处理、模式识别、模型参数估计、循环定阶判别以及模型整合,建立表征机床热误差变化规律的实时补偿模型,并通过判别温度变化趋势,实时调整模型迭代系数.通过实时补偿系统,利用所建立的热误差补偿模型对数控机床的热漂移误差进行实时补偿加工.结果表明,工件的径向尺寸误差从补偿前最大的112μm降低到7μm,机床加工精度和稳定性大幅度提高.  相似文献   

7.
针对多轴数控机床热影响导致的加工精度衰减问题,结合神经网络自学习与数据拟合能力,提出基于优化BP神经网络的多轴数控机床综合误差补偿方法。针对BP神经网络神经元误差曲面下降缓慢影响收敛效率的问题,引入陡度因子和放大因子,并基于此对数控机床运动轴加工精度进行预测和补偿。将大型A/B双摆角龙门数控铣床各关键发热源的温度检测数据和运动轴误差检测数据作为精度预测模型的输入量和输出量,采用改进后的BP神经网络进行训练,获得温度变化与位移误差量之间的非线性映射关系,并据此修改被加工工件的刀位数据文件,实现数控机床加工精度的提高。模拟算例和实验结果表明,该方法降低了传统BP神经网络的预测误差和运算时间,对机床平均误差补偿率达到50%以上。开发的数控机床误差补偿系统无须对现有机床进行大规模硬件改造,应用简便易于推广。  相似文献   

8.
为了预测数控机床运行时热误差对进给系统定位精度的影响,以精密坐标镗床为研究对象,采用红外热像仪和激光干涉仪分别测量进给系统在每个测点的丝杠温度和定位精度,提出进给系统热误差的最小二乘支持向量机(LS-SVM)预测方法,建立了关于温度与位置的预测模型。模型引入最小二乘支持向量机方法对机床进给系统热误差进行预测分析,较好地描述了进给轴热误差与温度、位置之间的非线性关系,且对样本的依赖度小,有很好的泛化能力,解决了目前线性拟合模型用特征平均温度替代当前测点温度进行计算而存在较大误差的问题。实验结果表明,与目前已经在数控机床上实际应用的线性预测模型相比,LS-SVM模型对进给系统热误差的预测精度可达90%,预测精度提高30%以上,取得了非常好的预测效果,具有较高的现实应用价值。  相似文献   

9.
为降低机床加工过程中温度场变化对机床加工精度的影响,分析了数控机床生产过程中热源组成及热误差产生机理,根据灰色关联度理论从原设定的8个温度测量点中计算选定4个机床温度关键测量点,建立了灰色GM(1,4)预测模型。该模型搭建了4个关键测温点的温度变化情况与机床热误差值之间的映射关系,能在生产过程通过获取关键点温度实时预测机床热误差值,再通过数控系统将预测值补偿到刀具进给位置,以此形成机床热误差补偿机制。最后,以精密卧式加工中心THM6380为实验对象,检验GM(1,4)模型预测结果与实际热误差值间的差距,拟合残差在±1μm以内,拟合效果良好。  相似文献   

10.
数控机床的误差模型   总被引:4,自引:0,他引:4  
以多体系统基本理论为基础,根据数控机床实际情况,推导出数控机床几何误差模型,建立了适合于各类工程对象进行运动误差分析与研究的一般多体系统误差分析理论,在此基础上,可以推导出加入热误差和变形误差在内的数控机床误差模型。  相似文献   

11.
热误差是精密、超精密加工中主要的误差源之一,热误差温度测点优化是热误差补偿的关键问题.在机床空间多维布置的大量温度测点之间存在多重相关性,从众多测点中选取特征点的优劣程度,将直接影响到热误差补偿效果.通过对温度测点间多重相关性及温度与热误差关系的综合分析,采用改进的模糊C-均值(IFCM)聚类算法对温度测点进行聚类,以减小类与类之间温度测点的相关性,且避免FCM算法对初始聚类中心敏感易局部收敛的缺点.对温度测点按灰色关联分析(GRA)中的灰色综合关联度进行排序,从变化量和变化率的角度综合反映温度与热误差的关系.采用IFCM-GRA对温度测点进行优化,提高了热误差模型的鲁棒性及准确性,使温度测点数量大幅度减少.在某型号精密卧式加工中心上进行实验,温度测点从17个减少到4个.在不同转速下,利用多元线性回归对优化出的温度测点与热误差建立模型,所建立模型均能很好地预测热误差变化情况,经对预测模型分析,轴向热误差由几十微米减小到5μm以内.  相似文献   

12.
为了实现移动机器人的精确自主定位,根据不同传感器的测量原理定义了视觉误差和惯性测量单元误差项,采用基于图优化的思想构建一个最小二乘问题的位姿估计器数学模型,并把多种传感器的误差项添加到估计器中,使用优化工具求解出最优的位姿,实现多传感器的融合定位。通过在仿真实验平台上运行公共数据集,实验结果表明单传感器的定位方案因为尺度模糊和累计漂移的问题在绝对位姿误差平均值达到7.942 m,而融合多传感器的定位方案的绝对位姿误差平均值为0.234 m,说明融合多传感器的定位方案比单传感器定位方案在定位上更加准确和鲁棒。  相似文献   

13.
针对影响五轴数控机床加工精度的复杂热特性,提出了一种用于摇篮式五轴数控机床热误差建模方法.该方法主要采用鲨鱼嗅觉优化(SSO)算法和神经网络的复合建模方式,有效提高了机床热误差预测模型的精度和建模效率.首先通过使用热成像仪筛选出机床的温度敏感点,然后将温度传感器布置在机床热敏感点的位置,将采集到的热特性数据采用本文所提方法进行热误差建模,结果表明,该方法在建模速度和精度上要优于ABC和PSO神经网络,最后将该热误差预测模型应用于五轴数控机床热误差补偿实验,将试件加工精度提高了32%.  相似文献   

14.
大型数控滚齿机热误差补偿建模   总被引:2,自引:0,他引:2  
针对某大型数控滚齿机,提出滚刀与工件主轴中心距热误差计算新模型,建立热误差实验检测系统,进行热误差与温度的关系实验;在此基础上,采用模糊聚类与多元线性回归法建立滚刀与工件主轴中心距热误差补偿模型;将补偿模型与实验数据进行对比分析,揭示滚齿机热误差规律,得到热误差随加工温度变化曲线。研究结果表明:经热误差理论、实验及补偿模型值比较,三者热相对误差均低于5%,验证了所建立热误差补偿模型的正确性与有效性,表明该热误差补偿模型精度高,实用性及鲁棒性强,可为滚齿机热误差预测、控制及实时补偿提供有益参考与指导。  相似文献   

15.
提出了一种基于状态空间模型的机床热误差建模方法,以几个关键温度点的温升为输入,结合状态变量和干扰来确定热误差输出,由子空间辨识算法得到模型参数.同时,在一台数控车床上进行实验,以探究模型的精度和鲁棒性.结果表明:在不同的转速条件下,所提出的模型能够补偿70%的热误差;与自回归模型的建模方法相比,状态空间模型表现出更优异的鲁棒性.  相似文献   

16.
 研究数控铣床几何误差检测及其补偿技术,对高速数控铣床工作空间中的平面误差场的检测、建模和补偿技术进行了比较系统和深入的探讨。对几何误差的基本特性,在单轴轴向运用高精度的HEIDENHAIN直线光栅进行了试验验证。结果表明,在满足基本测试条件下,误差的基本特性成立,这为提供新的误差测量方法打下了基础;针对数控铣床运动过程中的反向间隙,提出了插补运动综合几何误差的间隙补偿技术和算法,数据处理后的测量结果显示反向间隙可以很好地得到补偿。  相似文献   

17.
针对主要基于受综合因素影响的机床本体温度所建立的热误差模型鲁棒性较差的问题.综合考虑机床本体温度、动力源转速、冷却液温度及环境温度提出了多变量关联热误差组合模型.将最小二乘支持向量机(LS-SVM)的方法运用到热误差建模中,并利用偏最小二乘(PLS)方法提取输入变量的主成分作为LS-SVM的输入,形成PLS-LSSVM组合热误差模型.此外根据数控加工过程及材料热变形原理,将相对起始温度的差温值作为温度输入,使热误差补偿更加准确.在某型号精密加工中心进行实验验证,结果表明:PLS-LSSVM模型比LS-SVM更稳定,比PLSR预测精度高;考虑差温多变量的PLS-LSSVM模型较单纯考虑机床本体测量温度值的PLS-LSSVM~*模型,热误差预测值的均方根误差(RMSE)平均减少了5.5μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号