共查询到20条相似文献,搜索用时 78 毫秒
1.
现实生活中绝大数系统都是非线性的,BP神经网络通过训练能否达到局部最优值、能否收敛以及训练的时间长短与初始值和阈值的选取关系密切.为此采用了具有动态惯性权重的粒子群算法对BP神经网络初始值进行优化.实验表明具有动态惯性权重的粒子群算法优化BP神经网络预测误差很小,能够跳出局部极小值,得到更优的结果. 相似文献
2.
针对数控机床因主轴热误差而严重影响加工精度等问题,结合求解最优解能力强的天鹰优化算法(AO)以及自学习和自适应能力强的卷积神经网络(CNN),提出一种采用AO-CNN的数控机床主轴热误差模型。根据磨齿加工过程特点,总结磨齿机主轴系统热变形规律,确定了X方向热误差为影响齿轮加工的主要因素;利用模糊C均值聚类(FCM)和相关系数法筛选出关键温度点;利用AO算法优化CNN结构的卷积核,并且建立AO-CNN的数控机床主轴X方向热误差预测模型。在2种不同转速的工况下对所建立模型的性能进行了验证,结果表明,采用AO-CNN进行热误差建模,数控机床X方向的热变形预测精度相比于CNN模型提高了15%,具有更加优越的预测精度。 相似文献
3.
4.
为攻克综采工作面顶板矿压显现规律预测预报的难题,构建一种基于免疫粒子群混合算法优化BP神经网络的矿压预测模型(IA-PSO-BP),针对BP神经网络收敛速度慢和易陷入局部最优的问题,采用免疫粒子群混合算法优化BP神经网络,并选取11种矿压主要影响因素作为模型基础数据,对工作面来压强度和来压步距进行预测。结果表明:IA-PSO-BP网络模型的收敛速度较BP网络模型和PSO-BP网络模型分别提高8倍和2倍,IA-PSO-BP网络模型的预测值与实测值基本吻合,预测结果的相对误差分别约为BP网络模型和PSO-BP模型的1/5和1/3。基于IA-PSO-BP的工作面矿压预测方法具有较快的收敛速度和较高的准确率,实现了工作面初次来压强度、周期来压强度、初次来压步距和周期来压步距距预测,为煤矿井下工作面矿压预测提供了一种新的技术途径。 相似文献
5.
本文将粒子群算法和模糊神经网络结合用于智能交通中的车牌图像匹配。利用粒子群算法全局寻优的快速性和模糊神经网络精确性,优化神经网络权重学习和训练神经网络。实验结果表明:本文设计算法具有精确性、收敛性和匹配快等特点。 相似文献
6.
基于粒子群优化算法的模糊C-均值聚类 总被引:15,自引:0,他引:15
利用粒子群优化(PSO)算法全局寻优、 快速收敛的特点, 结合模糊C 均值(FCM)算法提出一种新的模糊聚类算法. 新算法用PSO算法代替了FCM算法的基于梯度下降的迭代过程, 使算法具有很强的全局搜索能力, 很大程度上避免了FCM算法易陷入局部极小的缺陷; 同时也降低了FCM算法对初始值的敏感度. 实验结果表明, 与FCM相比本文算法聚类更为准确, 效率更高. 相似文献
7.
研究了基于粒子群算法的BP神经网络优化问题,将改进的粒子群优化算法用于BP神经网络的学习训练,并与传统的BP网络进行了比较.结果表明,将改进粒子群优化算法用于BP神经网络优化,不仅能更快地收敛于最优解,而且很大程度地提高了结果的精度. 相似文献
8.
基于粒子群优化的SVR算法与BP网络的比较研究 总被引:1,自引:0,他引:1
在回归问题上对比研究了基于粒子群算法优化选参的支持向量回归机模型和采用粒子群算法进行训练的后向传播网络的预测性能. 相似文献
9.
为提高数控机床热误差模型的预测精度,提出了将主成分分析与BP神经网络相结合的主轴热漂移误差的建模和预测方法.使用主成分分析法对多个温度变量进行降维处理或重新组合,将处理后所得较少的主成分变量作为样本输入BP神经网络进行训练而得到主轴热漂移误差模型,并与经过测点优化后以关键点温度作为输入的BP神经网络模型进行对比分析.结果表明:基于主成分分析与BP神经网络相结合的主轴热漂移误差模型的拟合精度较高,残差较小;由于BP神经网络的输入变量较少而使所提出的模型训练速度快、迭代次数少. 相似文献
10.
针对废水处理过程BP神经网络软测量模型受处理过程非线性特征影响,存在收敛速度慢、陷入局部极小点等问题,用改进的粒子群算法(PSO)优化BP神经网络,建立废水处理过程中出水化学需氧量(CODeff)与出水固体悬浮物(SSeff)的软测量模型(PSO-BP模型),并与基于遗传算法-BP神经网络算法的模型(GA-BP模型)及... 相似文献
11.
基于灰色神经网络的机床热误差建模 总被引:4,自引:0,他引:4
结合灰色模型和神经网络对数据处理的优点,提出了并联和嵌入型2种结构的灰色神经网络机床热误差预测模型。前者是在灰色模型和神经网络分别对机床热误差进行预测的基础上,采用线性组合方式,按照目标预测精度调整模型的加权系数,从而得到最终组合预测结果;后者是在神经网络输入层前增加灰化层,在输出层后增加白化层,通过对神经网络拓扑结构的改进,达到弱化原始数据随机性、提高预测模型鲁棒性和容错能力的目标。通过与传统灰色模型和神经网络进行试验结果对比表明:上述2种结构的灰色神经网络模型均提高了预测精度,且具有对原始数据要求低、计算简便、鲁棒性强等优点,可用于复杂实际加工场合中的数控机床热误差实时补偿。 相似文献
12.
介绍了粒子群优化(PSO)算法的原理,研究了将PSO算法应用于神经网络训练的方法,给出了算法软件实现的基本流程,并对Iris分类问题做了仿真实验,通过与BP算法的比较,结果表明基于PSO的神经网络训练算法操作简单,易于实现,而且训练精度较高,有良好的收敛性. 相似文献
13.
网络规模不断扩大的同时,也容易受到各种安全风险的威胁,因此,必须对网络安全风险进行准确评估。传统的评估系统中存在的趋势性、周期性以及随机性影响评估准确率的问题,导致评估的结果大都不准确;为此,提出并设计了基于混沌粒子群优化BP神经网络的网络安全风险评估系统。首先对系统的硬件进行了设计,并得出了设计的框图;然后使用混沌粒子群的优化算法和BP神经网络的算法对系统的软件进行了设计;最后进行了对比的实验。实验结果表明,该系统能够更好的协调,并处理评估过程中出现的问题,不会受到趋势性、周期性以及随机性的影响,能够更好的发挥网络安全评估的效果,提高评估的准确率,减小相对的误差。 相似文献
14.
15.
木材干燥是一个复杂的非线性系统,由于木材结构复杂且具有多样性和变异性,很难建立一个理想的符合木材干燥过程的数学模型.提出了利用粒子群算法的全局寻优能力优化动态递归网络连接权值系数的方法,对木材干燥动态建模.仿真结果表明:粒子群优化BP算法建立木材干燥动态模型提高了期望误差精度和收敛速度,避免了BP算法陷入局部极小值,具有较好的预测精度. 相似文献
16.
岩爆是典型高地应力区主要地质灾害之一,其预测理论和发生机制的研究目前并不成熟.本文通过选择合适的影响岩爆程度的主要因素,应用BP神经网络对岩爆样本进行训练并利用预测样本进行检验,由于BP神经网络的初始权值和阀值对网络学习效率和预测结果有影响,因此其对检验样本的预测结果往往不够理想.利用粒子群算法(PSO)对BP网络的初始权值和阀值进行优化,将改进后的BP神经网络算法应用于预测,预测的结果优于BP神经网络.表明利用PSO-BP神经网络算法对实际工程中的岩爆进行预测是可行的. 相似文献
17.
基于粒子群优化算法的双代号网络进度计划图的绘制 总被引:2,自引:0,他引:2
为了解决双代号网络图绘制过程中布局优化比较困难、算法复杂的问题,将粒子群优化算法引入到双代号网络图的优化中.以工序交叉最少为自适应度函数,通过建立网络图布局优化模型,在确定结点x坐标后,优化结点y坐标的位置,实现双代号网络图绘制布局优化.基于此模型,用VC#.NET编制了相应的双代号网络绘制程序,并以实际工程对该算法进行了验证 相似文献
18.
边坡稳定性分析与评价是边坡工程的核心内容,具有高度非线性和不确定性特征。首先,选取了多个边坡工程实例构成学习样本集,以土体重度、内摩擦角、粘聚力、坡角、坡高、孔隙比六个主要影响因素作为土坡稳定性的评价判别指标;然后,采用改进的粒子群算法优化BP神经网络模型,将网络权值和阈值粒子化,通过引入粒子群进化度和粒子群聚合度实现惯性权重的动态变化,利用粒子群算法的全局搜索性实现网络权值和阈值的更新,从而增强算法对非线性问题的处理能力,加快了收敛速度;最后,通过与其它边坡稳定性评价算法进行比较分析,表明了本文研究算法的可行性与合理性。 相似文献
19.
基于模糊聚类测点优化与向量机的坐标镗床热误差建模 总被引:1,自引:0,他引:1
为了研究电主轴系统热特性对机床精度的影响,建立了主轴轴向及径向热误差模型.以精密坐标镗床为对象,采用五点法对主轴热误差进行测量,并分析了转速对主轴热误差及温度场的影响规律.利用模糊聚类分析法对温度变量进行分组优化,选出对热误差敏感的温度变量,建立主轴轴向热伸长及径向热倾角的最小二乘支持向量机(LS-SVM)以及多元线性回归(MLRA)的综合热误差模型,并设定了预测优度评价标准.结果表明:模糊聚类分组法能有效降低温度变量间的多重共线性,并提高模型的稳定性;LS-SVM模型具备全局寻优的特点,可实现不同工况的高精度预测,预测精度可达90%,且比传统的MLRA模型有更好的通用性以及更强的泛化能力,可作为后期热误差的补偿模型. 相似文献
20.
机床主轴动态特性优化设计的遗传算法实现 总被引:1,自引:0,他引:1
机床主轴的动态特性设计可归结为特征值反问题的求解。研究了基于神经网络和遗传算法机床主轴动态特性结构优化设计的求解方法。计算结果及分析表明它是求解一切特征值反问题的有效方法。 相似文献