首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
基于LDA话题关联的话题演化   总被引:2,自引:0,他引:2  
话题演化可以帮助人们快速获取信息和了解趋势.提出了一种挖掘话题随时间变化的方法,通过话题抽取和话题关联实现话题的演化.对不同时间段的文集进行话题的自动抽取,话题数目在不同时间段是可变的;计算相邻时间段中任意2个话题的分布距离和话题的特征向量相似度实现话题的关联.实验结果证明,该方法不但可以描述同一个话题随时间的强度变化,还可以描述新话题的产生,旧话题的消失以及话题内容随时间的演化.  相似文献   

2.
着眼于舆情话题演化的时序特性、衍生特性和话题漂移现象,在分析话题演化特性的基础上构建了基于时间片划分的话题动态演化模型并通过数理分析和实验仿真对模型的有效性进行了验证.实验结果说明划分时间片的话题演化模型可以在保证热点话题追踪准确性前提下可进一步通过缩减信息流规模来提高话题追踪效率,从而解决以往话题追踪算法中由于舆情话题的漂移和衍生特性导致的追踪效率低下的问题.  相似文献   

3.
为了解决OLDA模型中的主题混合和新主题不能及时发现的问题,基于OLDA模型提出一种改进的在线LDA模型(improved online LDA,IOLDA)。该模型根据主题强度为每个主题设置不同的遗传度,提出一种新的主题强度度量方法,根据文档-主题分布的集中程度为文档设置不同的权值,该方法可以有效降低宽泛主题的强度得分;利用模型主题对齐的特点,采用Jensen-Shannon距离横向计算话题间的关联。实验结果表明:本文提出的方法能够有效地在线分析主题的演化。  相似文献   

4.
针对舆情话题演化中的话题漂移和衍生效应,提出基于时序主题信息的舆情话题演化分析方法并通过加入时序标签,对舆情热点话题内容和强度的演化过程进行了可视化.实例证明,该文提出的话题追踪算法能够有效探测出各阶段的舆情热点话题、分析舆情演化趋势,为突发事件发展态势的预测提供理论借鉴.  相似文献   

5.
目的 社交网络中存在着许多暴力话题,暴力话题识别对网络舆情的精准干预和管控具有十分重要的意义。当前网络暴力研究主要集中在用户负面情感计算、暴力用户识别等领域,缺乏对网络暴力组织构成研究,无法在复杂网络环境中精准识别网络暴力的附着载体。方法 通过分析网络暴力在话题内的聚焦特性,提出了一种基于LDA模型和卡方检验的网络暴力话题识别方法,该方法首先运用LDA模型识别网络语料库中的话题,并用相似度计算方法对话题文本进行分类;然后运用卡方检验筛选话题文本中的暴力特征;最后依据情感词典计算各话题内的暴力值,按照暴力密度判断话题的暴力属性。结果/结论 在真实的网络语料库上实验验证了本文方法,实验结果表明:本文方法的暴力话题识别性能(F值)均值为80.64%,优于对比方法,达到了良好的网络暴力话题识别效果。  相似文献   

6.
使用隐狄利克雷分布(LDA)进行话题检测时,话题模型产生的话题存在语义上的分层现象;LDA建模产生的话题会出现语义上概括较广的泛话题;话题数目超参数K的设定通常根据人的经验.这些将造成建模结果出现包含多个子话题的混合话题情况.针对上述问题,文中基于层次聚类算法,使用一种文档特征词序列对LDA模型分类结果粒度过粗、热点话题检测结果泛化所导致的舆情监控价值较低的情况进行子话题检测.首先对LDA模型建模结果进行优化,对话题-单词分布与文档-单词分布两个矩阵进行过滤;然后对重叠话题进行检测与合并,采用文档间紧密度度量方式发现泛话题与混合话题;最后通过层次聚类算法对话题下的文本进行二次聚类,得到话题下的子话题.实验结果表明:该算法对子话题的检测能够在更深层次上体现出热点话题的特性,便于舆情监控分析;与Single-Pass算法和K-均值聚类算法相比,该算法获得的结果更具有有效性;K的选取策略对基于层次聚类的子话题检测算法具有鲁棒性.  相似文献   

7.
从研究主题的角度出发,引入LDA主题模型,分析2011-2020年"高校科研管理"相关的期刊文献.结果 显示,我国高校科研管理研究文献呈倒"U"形趋势,自2015年峰值后下降明显,研究力量有所减弱.研究主题随高校科研发展的要求发生承接和转化.研究主题的选择从研究的外部规律(注重高校的管理主体等)向重视内部规律(科研人员...  相似文献   

8.
根据候选解空间上抽样分布的构造和计算来描述演化算法的行为,抽样分布的迭代构造是利用基于代(generation)方法的全局解机搜索思想来刻划,在这种框架下,比例选择看成是全局随机搜索算子,复合看成是开发候选解相似性的搜索过程,研究表明:适当地限制复合算子的搜索宽度,能够保证演化算法弱收敛到全局最优解。  相似文献   

9.
文章以话题检测与跟踪技术的理论为指导基础,建立向量空间模型的话题模型.结合演化理论对社区内话题的生命周期进行检测与跟踪,度量话题的强度,以描绘出话题的演化过程及趋势.研究藏语网络社区的话题演变,可便更加快捷方便地了解社区动态.  相似文献   

10.
针对传统序列图像拼接算法中的误差累积问题,提出一种基于全局和局部特征的图像拼接方法. 同时拍摄大视场角、低分辨率全局图像和小视场角、高分辨率局部图像,利用深度学习替代传统算法提取两者匹配点,进而根据两者面积比等比例扩大全局图像的匹配点坐标,将局部图像无缩放地投影至全局图像所在平面,最后融合投影后局部图像的重叠区域,拼接形成一幅大视场角、高分辨率全景图像. 实验结果表明,该方法中深度学习快速且精准地实现了特征匹配,同时局部图像间相互独立,有效地解决了拼接顺序限制和拼接误差累积.   相似文献   

11.
一种改进的LDA主题模型   总被引:2,自引:0,他引:2  
由于文档中的词符合幂律分布,使得LDA模型的主题分布向高频词倾斜,导致能够代表主题的多数词被少量的高频词淹没使得主题表达能力降低.通过一种高斯函数对特征词加权,改进LDA主题模型的主题分布.实验显示加权LDA模型获得的主题间的相关性以及复杂度(Perplexity)值都降低,说明改进模型在主题表达和预测性能方面都有所提高.  相似文献   

12.
针对潜在狄利克雷分析(LDA)模型分析大规模文档集或语料库中潜藏的主题信息计算时间较长问题,提出基于MapReduce架构的并行LDA主题模型建立方法.利用分布式编程模型研究了LDA主题模型建立方法的并行化实现.通过Hadoop并行计算平台进行实验的结果表明,该方法在处理大规模文本时,能获得接近线性的加速比,对主题模型的建立效果也有提高.   相似文献   

13.
融合Sentence-BERT和LDA的评论文本主题识别(SBERT-LDA)方法,将LDA的主题数作为K-means算法中的k值,导致算法可解释性较差、主题一致性较低。为了解决上述问题,提出基于密度Canopy的SBERT-LDA优化方法(SBERT-LDA-DC),利用密度Canopy改进K-means算法。实验结果表明,提出的方法在一致性指标上要优于使用K-means以及K-means++对特征向量聚类的同类方法;与SBERT-LDA方法相比,在1 852条戏剧评论数据集上,一致性指标值提高了22.9%。因此,所提出的SBERT-LDA-DC方法是有效的,对产品或服务提供者更好地了解用户意见、完善自身产品或提升服务水平提供了新方法,具有较强的实际应用价值。  相似文献   

14.
陈可嘉  刘惠 《科学技术与工程》2021,21(29):12631-12637
针对文本分类中文本数据表示存在稀疏性、维度灾难、语义丢失的问题,提出一种基于单词表示的全局向量(global vectors for word representation, GloVe)模型和隐含狄利克雷分布(latent Dirichlet allocation, LDA)主题模型的文本表示改进方法。利用GloVe模型结合局部信息和全局词语共现的统计信息训练得到文本的稠密词向量,基于LDA主题模型生成文本隐含主题和相应的概率分布,构建文本向量以及基于概率信息的主题向量,并计算两者之间的相似性作为分类器的输入。实验结果表明,相比其他几种文本表示方法,改进方法在精确率、召回率和F_1值上均有所提高,基于GloVe和LDA的文本表示改进方法能有效提升文本分类器的性能。  相似文献   

15.
随着智能终端的普及,文本的主题挖掘需求也越来越广泛,主题建模是文本主题挖掘的核心,LDA生成模型是基于贝叶斯框架的概率模型,它以语义关联为基础,很好地解决了文本潜在主题的提取问题。对文本聚类过程的核心技术LDA生成模型、数据采样、模型评价等作了较为深入的阐述和解析,结合网络教育平台的2 794篇学习刊物进行了主题发现和聚类实验,建立了包含3 800个词项的词库,通过kmeans算法和合并向量算法(UVM)分两步解决了主题聚类问题。提出了文本挖掘实验的一般方法,并对层次聚类中文本距离的算法提出了改进。实验结果表明,该平台刊物的主题整体相似度比较好,但主题过于集中使得许多刊物的内容不具有辨识度,影响用户对主题的定位。  相似文献   

16.
对利用主题模型挖掘医疗服务主题进行了深入研究,针对LDA主题模型用于医疗评论主题挖掘中存在的语义稀疏、共现信息不足等问题,提出一种基于词共现分析与LDA主题模型结合的CO-LDA模型.首先使用词共现分析方法对评论语料库进行分析,得到词共现矩阵.其次利用LDA主题模型对语料评论进行建模表示,挖掘出患者对医疗服务的关注点.基于平均最小JS距离、平均肯德尔等级相关系数τb及平均TF-IDF 3个指标对比CO-LDA模型与传统LDA模型在医疗评论主题挖掘中的应用效果,实验最终表明CO-LDA模型识别主题的一致性和主题质量优于LDA模型.将实验结果与中国《医院评价标准》进行对比,一致性较高,说明基于CO-LDA的在线医疗评论主题挖掘方法的有效性.   相似文献   

17.
京津冀协同发展是当前各学科领域共同关注的热点话题。为深入了解京津冀协同发展话题的研究趋势,以2009~2019年中国知网收录的14 235篇与京津冀协同发展相关的期刊论文为研究对象,采用概率主题模型方法,提出以困惑度、主题平均相似度为指标确定最优主题数,结合文献发表时间挖掘期刊论文潜在主题,从主题强度和主题相似度等多个角度分析主题演化趋势。通过数据分析,挖掘10个潜在主题,生成主题强度年度变化趋势,构建主题内容演化路径,分析主题演化规律。以期为深刻认识京津冀协同发展和科学决策提供理论依据。  相似文献   

18.
将文本之间存在的时序关联性元信息和文档的标签信息, 引入到隐藏Dirichlet分配模型中, 提出一种在线增量标签主题(on line labeled incremental topic model, OLT)模型. 首先, 在线增量标签主题模型优化了文本标签元信息与主题之间的映射关系; 其次, 利用动态字典增加了模型与文本的拟合程度. 该模型优化了
先验分布超参数迁移计算的连续性, 解决了隐藏Dirichlet分配(LDA)模型不能利用文本属性与主题之间的相关性进行主题发现及演变分析的问题. 实验结果表明, 所提出的在线增量标签主题模型能显著改善多标签判别精度, 提高模型的泛化能力并提升模型的运行性能.  相似文献   

19.
针对LDA(Latent Dirichlet Allocation)主题模型生成的大量topic,很大部分topic内部词语相关度很低,可解释性差,对语言模型后的应用效果带来一定的影响.针对这一问题,该文提出了一种基于主题加权LDA模型的情感分类方法,该模型实现不同主题中内部相关的词语特征加权计算,能够消除不同主题内具有相关度词语的相互影响.实验结果表明,与传统LDA模型分类方法对比,该文提出的基于主题加权LDA模型的情感分类方法平均F1值提高了6.7%~8.1%,验证了该文提出的方法是有效的,提高了分类效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号