首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Traditional medicine has been a fertile source for revealing novel lead molecules for modern drug discovery. In plants, terpenoids represent a chemical defense against environmental stress and provide a repair mechanism for wounds and injuries. Interestingly, effective ingredients in several plant-derived medicinal extracts are also terpenoid compounds of monoterpenoid, sesquiterpenoid, diterpenoid, triterpenoid and carotenoid groups. Inflammatory diseases and cancer are typical therapeutic indications of traditional medicines. Thus folk medicine supports the studies which have demonstrated that plant-derived terpenoid ingredients can suppress nuclear factor-κB (NF-κB) signaling, the major regulator in the pathogenesis of inflammatory diseases and cancer.We review the extensive literature on the different types of terpenoid molecules, totalling 43, which have been verified both inhibiting the NF-κB signaling and suppressing the process of inflammation and cancer. It seems that during evolution, plants have established a terpene-based host defense which also represents a cornucopia of effective therapeutic compounds for common human diseases. Received 11 March 2008; received after revision 28 April 2008; accepted 29 April 2008  相似文献   

2.
Research on aging in model organisms has revealed different molecular mechanisms involved in the regulation of the lifespan. Studies on Saccharomyces cerevisiae have highlighted the role of the Sir2 family of genes, human Sirtuin homologs, as the longevity factors. In Caenorhabditis elegans, the daf-16 gene, a mammalian homolog of FoxO genes, was shown to function as a longevity gene. A wide array of studies has provided evidence for a role of the activation of innate immunity during aging process in mammals. This process has been called inflamm-aging. The master regulator of innate immunity is the NF-κB system. In this review, we focus on the several interactions of aging-associated signaling cascades regulated either by Sirtuins and FoxOs or NF-κB signaling pathways. We provide evidence that signaling via the longevity factors of FoxOs and SIRT1 can inhibit NF-κB signaling and simultaneously protect against inflamm-aging process. Received 4 October 2007; received after revision 7 November 2007; accepted 9 November 2007  相似文献   

3.
4.
Accumulation of abnormal proteins and endoplasmic reticulum stress accompany neurodegenerative diseases including Huntington’s disease. We show that the expression of mutant huntingtin proteins with extended polyglutamine repeats differentially affected endoplasmic reticulum signaling cascades linked to the inositol-requiring enzyme-1 (IRE1) pathway. Thus, the p38 and c-Jun N-terminal kinase pathways were activated, while the levels of the nuclear factor-κB-p65 (NF-κB-p65) protein decreased. Downregulation of NF-κB signaling was linked to decreased antioxidant levels, increased oxidative stress, and enhanced cell death. Concomitantly, calpain was activated, and treatment with calpain inhibitors restored NF-κB-p65 levels and increased cell viability. The calpain regulator, calpastatin, was low in cells expressing mutant huntingtin, and overexpression of calpastatin counteracted the deleterious effects caused by N-terminal mutant huntingtin proteins. These results show that calpastatin and an altered NF-κB-p65 signaling are crucial factors involved in oxidative stress and cell death mediated by mutant huntingtin proteins.  相似文献   

5.
The nuclear factor-κB (NF-κB) signaling pathway plays a key role in inflammation, immune response, cell growth control and protection against apoptosis. Recently, it has been associated with several distinct genetic diseases that exhibit a large spectrum of dysfunction, such as skin inflammation, perturbed skin appendage development and immunodeficiencies. In this review, a summary of the pathophysiological consequences of impaired NF-κB activation in humans is provided with respect to the functions of the molecules which are mutated.Received 26 January 2005; received after revision 7 March 2005; accepted 31 March 2005  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
Members of the tumor necrosis factor receptor (TNFR) family regulate the activation, differentiation, and function of many cell types, including cells of the immune system. TNFR-associated factors (TRAFs) function as adapter molecules controlling signaling pathways triggered by TNFR family members, such as activation of nuclear factor B (NF-B). Despite intensive research, the function of TRAF4 in signaling pathways triggered by TNFR-related proteins remains enigmatic. Intriguingly, our functional studies indicated that TRAF4 augments NF-B activation triggered by glucocorticoid-induced TNFR (GITR), a receptor expressed on T cells, B cells, and macrophages. Further analyses revealed that TRAF4-mediated NF-B activation downstream of GITR depends on a previously mapped TRAF-binding site in the cytoplasmic domain of the receptor and is inhibited by the cytoplasmic protein A20. GITR is thought to inhibit the suppressive function of regulatory T cells (Treg cells) and to promote activation of T cells. Taken together, our studies provide the first indications that TRAF4 elaborates GITR signaling and suggest that TRAF4 can modulate the suppressive functions of Treg cells.Received 20 September 2004; received after revision 8 October 2004; accepted 18 October 2004  相似文献   

14.
15.
16.
Toll-like receptors (TLRs) act as sensors of microbial components and elicit innate immune responses. All TLR signaling pathways activate the nuclear factor-kappaB (NF-κB), which controls the expression of inflammatory cytokine genes. Transforming growth factor-β-activated kinase 1 (TAK1) is a serine/threonine protein kinase that is critically involved in the activation of NF-κB by tumor necrosis factor (TNFα), interleukin-1β (IL-1β) and TLR ligands. In this study, we identified a novel protein, WD40 domain repeat protein 34 (WDR34) as a TAK1-interacting protein in yeast two-hybrid screens. WDR34 interacted with TAK1, TAK1-binding protein 2 (TAB2), TAK1-binding protein 3 (TAB3) and tumor necrosis factor receptor-associated factor 6 (TRAF6) in overexpression and under physiological conditions. Overexpression of WDR34 inhibited IL-1β-, polyI:C- and lipopolysaccharide (LPS)-induced but not TNFα-induced NF-κB activation, whereas knockdown of WDR34 by a RNA-interference construct potentiated NF-κB activation by these ligands. Our findings suggest that WDR34 is a TAK1-associated inhibitor of the IL-1R/TLR3/TLR4-induced NF-κB activation pathway. D. Gao and R. Wang contributed equally to this work.  相似文献   

17.
18.
Ubiquitination has emerged over the years as the most sophisticated way to modify proteins to affect their fate and function. In particular, it has been reported to be instrumental in regulating several steps of the NF-κB signalling pathway which controls inflammation, immunity, adhesion and cell survival. Integrating ubiquitination into NF-κB activation requires the regulatory subunit of IKK, NEMO, which not only displays affinity for polyubiquitin chains, but is also posttranslationally modified by a complex set of reactions involving ubiquitin. Here, we examine how studies of the NEMO/ubiquitin relationship have provided novel insights into the IKK activation process and have uncovered molecular mechanisms that should represent in the future attractive targets for specifically modulating NF-κB function.  相似文献   

19.
Palmitate activates the NF-κB pathway, and induces accumulation of lipid metabolites and insulin resistance in skeletal muscle cells. Little information is available whether and how these processes are causally related. Therefore, the objectives were to investigate whether intra-cellular lipid metabolites are involved in FA-induced NF-κB activation and/or insulin resistance in skeletal muscle and to investigate whether FA-induced insulin resistance and NF-κB activation are causally related. Inhibiting DGAT or CPT-1 by using, respectively, amidepsine or etomoxir increased DAG accumulation and sensitized myotubes to palmitate-induced insulin resistance. While co-incubation of palmitate with etomoxir increased NF-κB transactivation, co-incubation with amidepsine did not, indicating that DAG accumulation is associated with insulin resistance but not with NF-κB activation. Furthermore, pharmacological or genetic inhibition of the NF-κB pathway could not prevent palmitate-induced insulin resistance. In conclusion, we have demonstrated that activation of the NF-κB pathway is not required for palmitate-induced insulin resistance in skeletal muscle cells.  相似文献   

20.
Parkinson's disease (PD) is characterized by a progressive loss of dopaminergic neurons in the substantia nigra. The cause of neuronal death in PD is largely unknown, but several genetic loci, including PTEN-induced putative kinase 1 (PINK1), have been linked to early onset autosomal recessive forms of familial PD. PINK1 encodes a serine/threonine kinase, which phosphorylates several substrates and consequently leads to cell protection against apoptosis induced by various stresses. In addition, research has shown that inflammation largely contributes to the pathogenesis of PD, but the functional link between PINK1 and PD-linked neuroinflammation remains poorly understood. Therefore, in the present study, we investigated the functional role of PINK1 in interleukin (IL)-1β-mediated inflammatory signaling. We show that PINK1 specifically binds to TRAF6 and TAK1, and facilitates the autodimerization and autoubiquitination of TRAF6. PINK1 also enhances the association between TRAF6 and TAK1, phosphorylates TAK1, and stimulates polyubiquitination of TAK1. Furthermore, PINK1 leads to the potentiation of IL-1β-mediated NF-κB activity and cytokine production. These findings suggest that PINK1 positively regulates two key molecules, TRAF6 and TAK1, in the IL-1β-mediated signaling pathway, consequently up-regulating their downstream inflammatory events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号