首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autophagy is an evolutionarily conserved, multi-step lysosomal degradation process for the clearance of damaged or superfluous proteins and organelles. Accumulating studies have recently revealed that autophagy is closely related to a variety of types of cancer; however, elucidation of its Janus role of either tumor-suppressive or tumor-promoting still remains to be discovered. In this review, we focus on summarizing the context-dependent role of autophagy and its complicated molecular mechanisms in different types of cancer. Moreover, we discuss a series of small-molecule compounds targeting autophagy-related proteins or the autophagic process for potential cancer therapy. Taken together, these findings would shed new light on exploiting the intricate mechanisms of autophagy and relevant small-molecule compounds as potential anti-cancer drugs to improve targeted cancer therapy.  相似文献   

2.
Diabetic kidney disease, a leading cause of end-stage renal disease, has become a serious public health problem worldwide and lacks effective therapies. Autophagy is a highly conserved lysosomal degradation pathway that removes protein aggregates and damaged organelles to maintain cellular homeostasis. As important stress-responsive machinery, autophagy is involved in the pathogenesis of various diseases. Emerging evidence has suggested that dysregulated autophagy may contribute to both glomerular and tubulointerstitial pathologies in kidneys under diabetic conditions. This review summarizes the recent findings regarding the role of autophagy in the pathogenesis of diabetic kidney disease and highlights the regulation of autophagy by the nutrient-sensing pathways and intracellular stress signaling in this disease. The advances in our understanding of autophagy in diabetic kidney disease will facilitate the discovery of a new therapeutic target for the prevention and treatment of this life-threatening diabetes complication.  相似文献   

3.
Degradation of dysfunctional intracellular components in the lysosome system can occur through three different pathways, i.e., macroautophagy, microautophagy and chaperone-mediated autophagy (CMA). In this review, we focus on CMA, a type of autophagy distinct from the other two autophagic pathways owing to its selectivity, saturability and competitivity by which a subset of long-lived cytosolic soluble proteins are directly delivered into the lysosomal lumen via specific receptors. CMA participates in quality control to maintain normal cell functions by clearing “old” proteins and provides energy to cells under nutritional stress. Deregulation of CMA has recently been shown to underlie some diseases, especially neurodegenerative disorders for which the decline with age in the activity of CMA may become a major aggravating factor. Therefore, targeting aberrant alteration in CMA under pathological conditions could serve as a potential therapeutic strategy for treating related diseases.  相似文献   

4.
The growth and proliferation of metazoan cells are driven by cellular nutrient status and by extracellular growth factors. Growth factor receptors on cell surfaces initiate biochemical signals that increase anabolic metabolism and macropinocytosis, an actin-dependent endocytic process in which relatively large volumes of extracellular solutes and nutrients are internalized and delivered efficiently into lysosomes. Macropinocytosis is prominent in many kinds of cancer cells, and supports the growth of cells transformed by oncogenic K-Ras. Growth factor receptor signaling and the overall metabolic status of the cell are coordinated in the cytoplasm by the mechanistic target-of-rapamycin complex-1 (mTORC1), which positively regulates protein synthesis and negatively regulates molecular salvage pathways such as autophagy. mTORC1 is activated by two distinct Ras-related small GTPases, Rag and Rheb, which associate with lysosomal membranes inside the cell. Rag recruits mTORC1 to the lysosomal surface where Rheb directly binds to and activates mTORC1. Rag is activated by both lysosomal luminal and cytosolic amino acids; Rheb activation requires phosphoinositide 3-kinase, Akt, and the tuberous sclerosis complex-1/2. Signals for activation of Rag and Rheb converge at the lysosomal membrane, and several lines of evidence support the idea that growth factor-dependent endocytosis facilitates amino acid transfer into the lysosome leading to the activation of Rag. This review summarizes evidence that growth factor-stimulated macropinocytosis is essential for amino acid-dependent activation of mTORC1, and that increased solute accumulation by macropinocytosis in transformed cells supports unchecked cell growth.  相似文献   

5.
The classical view that endogenous antigens are processed by the proteasome and loaded on MHC class I molecules in the endoplasmic reticulum, while exogenous antigens taken up by endocytosis or phagocytosis are degraded and loaded on MHC class II in lysosome-derived organelles, has evolved along with the improvement of our understanding of the cell biology of antigen-presenting cells. In recent years, evidence for alternative presentation pathways has emerged. Exogenous antigens can be processed by the proteasome and loaded on MHC class I through a pathway called cross-presentation. Moreover, endogenous antigens can be targeted to lytic organelles for presentation on MHC class II through autophagy, a highly conserved cellular process of self-eating. Recent evidence indicates that the vacuolar degradation of endogenous antigens is also beneficial for presentation on MHC class I molecules. This review focuses on how various forms of autophagy participate to presentation of these antigens on MHC class I.  相似文献   

6.
The epidermis and its appendages, such as the hair follicle (HF), continually regenerate throughout postnatal mammalian life due to the activity of resident epithelial stem cells (SCs). The follicular SC niche, or the bulge, is composed of a heterogeneous population of self-renewing multipotent cells. Multiple intrinsic molecular mechanisms promote the transition of follicular SCs from quiescence to activation. In addition, numerous extrinsic cell types influence the activity and characteristics of bulge cells. Ultimately, the balance between these intrinsic and extrinsic mechanisms influences the function of bulge cells during homeostasis and tissue regeneration and likely contributes to skin tumorigenesis. Here, we review both the intrinsic and extrinsic factors that contribute to the skin SC niche.  相似文献   

7.
Autophagy is a degradative mechanism mainly involved in the recycling and turnover of cytoplasmic constituents from eukaryotic cells. Over the last years, yeast genetic screens have considerably increased our knowledge about the molecular mechanisms of autophagy, and a number of genes involved in fundamental steps of the autophagic pathway have been identified. Most of these autophagy genes are present in higher eukaryotes indicating that this process has been evolutionarily conserved. In yeast, autophagy is mainly involved in adaptation to starvation, but in multicellular organisms this route has emerged as a multifunctional pathway involved in a variety of additional processes such as programmed cell death, removal of damaged organelles and development of different tissue-specific functions. Furthermore, autophagy is associated with a growing number of pathological conditions, including cancer, myopathies and neurodegenerative disorders. The physiological and pathological roles of autophagy, as well as the molecular mechanisms underlying this multifunctional pathway, are discussed in this review.Received 12 January 2004; received after revision 29 January 2004; accepted 4 February 2004  相似文献   

8.
Metabolic activity indicative of cellular demand is emerging as a key player in cell fate decision. Numerous studies have demonstrated that diverse metabolic pathways have a critical role in the control of the proliferation, differentiation and quiescence of stem cells. The identification of neural stem/progenitor cells (NSPCs) and the characterization of their development and fate decision process have provided insight into the regenerative potential of the adult brain. As a result, the potential of NSPCs in cell replacement therapies for neurological diseases is rapidly growing. The aim of this review is to discuss the recent findings on the crosstalk among key regulators of NSPC development and the metabolic regulation crucial for the function and cell fate decisions of NSPCs. Fundamental understanding of the metabolic circuits in NSPCs may help to provide novel approaches for reactivating neurogenesis to treat degenerative brain conditions and cognitive decline.  相似文献   

9.
Axon degeneration is a pathophysiological process of axonal dying and breakdown, which is characterized by several morphological features including the accumulation of axoplasmic organelles, disassembly of microtubules, and fragmentation of the axonal cytoskeleton. Autophagy, a highly conserved lysosomal-degradation machinery responsible for the control of cellular protein quality, is widely believed to be essential for the maintenance of axonal homeostasis in neurons. In recent years, more and more evidence suggests that dysfunctional autophagy is associated with axonal degeneration in many neurodegenerative diseases. Here, we review the core machinery of autophagy in neuronal cells, and provide several major steps that interfere with autophagy flux in neurodegenerative conditions. Furthermore, this review highlights the potential role of neuronal autophagy in axon degeneration, and presents some possible molecular mechanisms by which dysfunctional autophagy leads to axon degeneration in pathological conditions.  相似文献   

10.
Autophagy takes part in regulating the eukaryotic cells function and the progression of numerous diseases, but its clinical utility has not been fully developed yet. Recently, mounting evidences highlight an important correlation between autophagy and bone homeostasis, mediated by osteoclasts, osteocytes, bone marrow mesenchymal stem cells, and osteoblasts, and autophagy plays a vital role in the pathogenesis of glucocorticoid-induced osteoporosis (GIOP). The combinations of autophagy activators/inhibitors with anti-GIOP first-line drugs or some new autophagy-based manipulators, such as regulation of B cell lymphoma 2 family proteins and caspase-dependent clearance of autophagy-related gene proteins, are likely to be the promising approaches for GIOP clinical treatments. In view of the important role of autophagy in the pathogenesis of GIOP, here we review the potential mechanisms about the impacts of autophagy in GIOP and its association with GIOP therapy.  相似文献   

11.
12.
13.
The localization of Golgi areas, particularly lysosomal bodies detected by their acid phosphatase activities, has been determined in the cytotoxic lymphocytes conjugated to their target cell. The study points out the preferential situation of these organelles close to the contact area between the two cells during the target cell lysis.  相似文献   

14.
15.
The ubiquitous distribution of lysosomes and their heterogeneous protein composition reflects the versatility of these organelles in maintaining cell homeostasis and their importance in tissue differentiation and remodeling. In lysosomes, the degradation of complex, macromolecular substrates requires the synergistic action of multiple hydrolases that usually work in a stepwise fashion. This catalytic machinery explains the existence of lysosomal enzyme complexes that can be dynamically assembled and disassembled to efficiently and quickly adapt to the pool of substrates to be processed or degraded, adding extra tiers to the regulation of the individual protein components. An example of such a complex is the one composed of three hydrolases that are ubiquitously but differentially expressed: the serine carboxypeptidase, protective protein/cathepsin A (PPCA), the sialidase, neuraminidase-1 (NEU1), and the glycosidase β-galactosidase (β-GAL). Next to this ‘core’ complex, the existence of sub-complexes, which may contain additional components, and function at the cell surface or extracellularly, suggests as yet unexplored functions of these enzymes. Here we review how studies of basic biological processes in the mouse models of three lysosomal storage disorders, galactosialidosis, sialidosis, and GM1-gangliosidosis, revealed new and unexpected roles for the three respective affected enzymes, Ppca, Neu1, and β-Gal, that go beyond their canonical degradative activities. These findings have broadened our perspective on their functions and may pave the way for the development of new therapies for these lysosomal storage disorders.  相似文献   

16.
Loss of chromosome integrity is a major contributor to cancer. Checkpoints within the cell division cycle that facilitate the accuracy and outcome of chromosome segregation are thus critical pathways for preserving chromosome integrity and preventing chromosomal instability. The spindle assembly checkpoint, the decatenation checkpoint and the post-mitotic tetraploidy checkpoint ensure the appropriate establishment of the spindle apparatus, block mitotic entry upon entanglement of chromosomes or prevent further progression of post-mitotic cells that display massive spindle defects. Most of our knowledge on these mechanisms originates from studies conducted in yeast, cancer cell lines and differentiated cells. Considering that in many instances cancer derives from transformed stem and progenitor cells, our knowledge on these checkpoints in these cells just started to emerge. With this review, we provide a general overview of the current knowledge of these checkpoints in embryonic as well as in adult stem and progenitor cells with a focus on the hematopoietic system and outline common mis-regulations of their function associated with cancer and leukemia. Most cancers are aging-associated diseases. We will thus also discuss changes in the function and outcome of these checkpoints upon aging of stem and progenitor cells.  相似文献   

17.
Mechanical stimulation affects growth and differentiation of stem cells. This may be used to guide lineage-specific cell fate decisions and therefore opens fascinating opportunities for stem cell biology and regenerative medicine. Several studies demonstrated functional and molecular effects of mechanical stimulation but on first sight these results often appear to be inconsistent. Comparison of such studies is hampered by a multitude of relevant parameters that act in concert. There are notorious differences between species, cell types, and culture conditions. Furthermore, the utilized culture substrates have complex features, such as surface chemistry, elasticity, and topography. Cell culture substrates can vary from simple, flat materials to complex 3D scaffolds. Last but not least, mechanical forces can be applied with different frequency, amplitude, and strength. It is therefore a prerequisite to take all these parameters into consideration when ascribing their specific functional relevance—and to only modulate one parameter at the time if the relevance of this parameter is addressed. Such research questions can only be investigated by interdisciplinary cooperation. In this review, we focus particularly on mesenchymal stem cells and pluripotent stem cells to discuss relevant parameters that contribute to the kaleidoscope of mechanical stimulation of stem cells.  相似文献   

18.
Loss of functional cardiomyocytes is a major underlying mechanism for myocardial remodeling and heart diseases, due to the limited regenerative capacity of adult myocardium. Apoptosis, programmed necrosis, and autophagy contribute to loss of cardiac myocytes that control the balance of cardiac cell death and cell survival through multiple intricate signaling pathways. In recent years, non-coding RNAs (ncRNAs) have received much attention to uncover their roles in cell death of cardiovascular diseases, such as myocardial infarction, cardiac hypertrophy, and heart failure. In addition, based on the view that mitochondrial morphology is linked to three types of cell death, ncRNAs are able to regulate mitochondrial fission/fusion of cardiomyocytes by targeting genes involved in cell death pathways. This review focuses on recent progress regarding the complex relationship between apoptosis/necrosis/autophagy and ncRNAs in the context of myocardial cell death in response to stress. This review also provides insight into the treatment for heart diseases that will guide novel therapies in the future.  相似文献   

19.
Research of the past two decades has proved the relevance of single cell biology in basic research and translational medicine. Successful detection and isolation of specific subsets is the key to understand their functional heterogeneity. Antibodies are conventionally used for this purpose, but their relevance in certain contexts is limited. In this review, we discuss some of these contexts, posing bottle neck for different fields of biology including biomedical research. With the advancement of chemistry, several methods have been introduced to overcome these problems. Even though microfluidics and microraft array are newer techniques exploited for single cell biology, fluorescence-activated cell sorting (FACS) remains the gold standard technique for isolation of cells for many biomedical applications, like stem cell therapy. Here, we present a comprehensive and comparative account of some of the probes that are useful in FACS. Further, we illustrate how these techniques could be applied in biomedical research. It is postulated that intracellular molecular markers like nucleostemin (GNL3), alkaline phosphatase (ALPL) and HIRA can be used for improving the outcome of cardiac as well as bone regeneration. Another field that could utilize intracellular markers is diagnostics, and we propose the use of specific peptide nucleic acid probes (PNPs) against certain miRNAs for cancer surgical margin prediction. The newer techniques for single cell biology, based on intracellular molecules, will immensely enhance the repertoire of possible markers for the isolation of cell types useful in biomedical research.  相似文献   

20.
Cytokines and growth factors play a crucial role in the maintenance of haematopoietic homeostasis. They transduce signals that regulate the competing commitments of haematopoietic stem cells, quiescence or proliferation, retention of stem cell pluripotency or differentiation, and survival or demise. When the balance between these commitments and the requirements of the organisms is disturbed, particularly when it favours survival and proliferation, cancer may result. Cell death provoked by loss of growth factor signalling is regulated by the Bcl-2 family of apoptosis regulators, and thus survival messages transduced by growth factors must regulate the activity of these proteins. Many aspects of direct interactions between cytokine signalling and regulation of apoptosis remain elusive. In this review, we explore the mechanisms by which cytokines, in particular Interleukin-3 and granulocyte–macrophage colony-stimulating factor, promote cell survival and suppress apoptosis as models of how cytokine signalling and apoptotic pathways intersect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号