首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
给出一个图G,称矩阵Q=D+A为无符号拉普拉斯谱矩阵,其中A表示G的邻接矩阵,D表示G的顶点度对角矩阵.研究了循环图的无符号拉普拉斯谱半径的上界,得到了几个有意义结果.进一步,讨论了循环图的卡氏积图的无符号拉普拉斯谱半径上界.  相似文献   

2.
图的谱半径的上界   总被引:2,自引:0,他引:2  
设G为n阶简单连通图,ρ(G)为图G的邻接谱半径.本文利用代数方法给出了ρ(G)的上界和达到上界的极图,并改进了文献[1][2]的结果。  相似文献   

3.
设G是n阶简单连通图,则L(G)=D(G)-A(G)称为图G的拉普拉斯矩阵,其中A(G)和D(G)分别表示图G的邻接矩阵和度对角矩阵.结合非负矩阵谱理论,利用图的边数、顶点数、最大度、最小度给出了图的拉普拉斯谱半径的新上界,同时给出达到上界的极图,并通过举例将所给的上界与已有的上界作比较,结果说明在一定程度上新上界优于已有结果.  相似文献   

4.
图G的距离谱半径ρ(G)是图G的距离矩阵的最大特征值.本文利用线性代数和图论的方法,先给出了一些使距离谱半径递减的图变换,然后利用这些变换确定了圈不交的双圈图中距离谱半径最小的极值双圈图,同时,给出了对应距离谱半径满足的三次方程.  相似文献   

5.
设G为n阶简单连通图,若L(G)为图G的度对角矩阵与邻接矩阵的差,则称L(G)为图G的Laplacian矩阵.结合非负矩阵谱理论,利用图的顶点度和平均二次度给出了图G的Laplacian矩阵的谱半径的新上界,同时给出了达到上界的极图.  相似文献   

6.
设G=(V,E)为n阶简单连通图,D(G)和A(G)分表示图G的度对角矩阵和邻接矩阵,则L(G)=D(G)-A(G)称为图G的Laplace矩阵。利用图的顶点度、最大度、平均二次度和图的公共邻点数,结合非负矩阵谱理论给出了图的Laplace谱半径的新上界,同时给出了达到上界的极图。  相似文献   

7.
设G为n阶简单连通图.若Q(G)为图G的对角矩阵与邻接矩阵的和,称Q(G)为G的拟-Laplacian矩阵.讨论了Q(G)的性质并利用G的顶点数、边数、最大度和最小度给出了图G的Laplacian矩阵谱半径的一个新上界.  相似文献   

8.
图的拉普拉斯谱半径的新上界   总被引:1,自引:1,他引:0  
设D(G)和A(G)分别是图G的度对角矩阵和邻接矩阵,则图G的Laplace矩阵定义为L(G)=D(G)-A(G).利用非负矩阵理论和图论知识给出了两个用图的边数、顶点数,以及顶点的最大度、次大度.最小度表示的L(G)谱半径的新上界,并确定等式成立的极图.最后举例说明这些上界使Laplace谱半径的估计值更小,从而在一定程度上改进了一些文献的结果.  相似文献   

9.
关于图与其补图谱半径之和的上界   总被引:4,自引:0,他引:4  
设G为n阶简单连通图,Gc为G的补图,ρ(G)和ρ(Gc)分别为图G和Gc的邻接谱半径.本文给出了图与其补图谱半径之和ρ(G)+ρ(Gc)的上界,从而改进了已有的结果.  相似文献   

10.
设图G是一个有n个顶点、m条边的简单图,Q(G)为图G的无符号拉普拉斯矩阵,本文利用图的度序列平方和上界,给出了简单图无符号拉普拉斯谱半径的一个新的上界。  相似文献   

11.
对于连通图G,矩阵Q(G)=D(G) A(G)称为图G的拟拉普拉斯矩阵,其中D(G)为图的度对角矩阵,A(G)为图的邻接矩阵.本文利用矩阵的一些性质,推导出连通图的拟拉普拉斯谱半径的一个上界.并将该上界与已有的一些结论结合具体图例作了优越性比较.  相似文献   

12.
G是一个无K5-图子式且边数为m的简单图,ρ(G)是图G的谱半径。利用图的圆色数,得出一个关于ρ(G)的上界:ρ(G)≤(3m/2)的平方根。  相似文献   

13.
一个连通图G的距离无符号拉普拉斯谱半径是G的距离无符号拉普拉斯矩阵的谱半径.G的距离无符号拉普拉斯矩阵定义为Q(G)=Tr(G)+D(G),这里Tr(G)是G的顶点传递的对角阵,且D(G)是G的距离矩阵.研究了所有n阶具有n-3个悬挂点的树的距离无符号拉普拉斯谱半径的极小值,并刻画了一类n阶具有n-3个悬挂点的树的距离无符号拉普拉斯谱半径的极大值与极小值.  相似文献   

14.
设G=(V,E)是一个具有顶点集■的简单图,顶点v_i的度数用d_i表示。定义图G的扩展矩阵■,这里■。定义图G的扩展谱半径为其扩展矩阵的最大特征值;定义图的扩展能量E_(ex)(G)为扩展邻接矩阵特征值的绝对值之和。利用分析和基本不等式技巧,得出了单圈图的扩展谱半径与能量的几个上界。  相似文献   

15.
图G的广义距离矩阵定义为D_α(G)=αTr(G)+(1-α)D(G),0≤α≤1,其中D(G)和Tr(G)分别表示图G的距离矩阵和传递度对角矩阵.研究了广义距离相关谱,给出了其谱半径、第二大特征值的界,及自补图的广义距离谱.  相似文献   

16.
设G为n阶简单连通图,若Q(G)为图G的对角矩阵与邻接矩阵的和,称Q(G)为G的拟-Laplacian矩阵.讨论了Q(G)的性质并利用G的顶点数、边数、最大度和最小度给出了图G的Laplacian矩阵谱半径新的上界.  相似文献   

17.
给出了由边数为m、顶点数为n的简单连通图G生成的树图T(G)及邻树图T^*(G)的谱半径的上界:ρ(T(G))≤det(Hr(G))(1-1/m) ρ(T^*(G))≤det(Hr(G))(1-1/x′(G))其中x′(G)是图G的边色数;并指出当G≌Cn时,ρ(T(G))的上界可达。  相似文献   

18.
图G=(V,E)为n阶有限图,A和D分别表示图G的邻接矩阵及度矩阵。R=D+A称为图G的无号拉普拉斯矩阵。利用代数方法和微积分中函数极值条件,对图和补图的无号拉普拉斯谱半径之和的上界进行了估计,得出了2个新的上界。  相似文献   

19.
若一个连通图G的点集是V(G)={v1,v2,…,vn},那么图G的距离矩阵D(G)=(dij),其中dij表示点vi与vj之间的距离.令TrG(vi)表示点vi到图G中其他所有点的距离之和,Tr(G)表示i行i列位置的元素TrG(vi)的对角矩阵.图G的距离无符号拉普拉斯矩阵QD(G)=Tr(G)+D(G).QD(G)的最大特征值λQ(G)是图G的距离无符号拉普拉斯谱半径.该文确定了给定匹配数的n个点的图的距离无符号拉普拉斯谱半径的下界.  相似文献   

20.
设G=(V,E)是一个具有m条边的n阶简单图,γ(G)是图G的无符号拉普拉斯谱半径。本文利用图的无符号拉普拉斯谱半径讨论了图的Hamilton性,并分别给出了一个图包含Hamilton路以及泛圈图的充分条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号